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Abstract—In order to explore underlying multi-mode
discriminative information simultaneously from high noise
EEG signals, multi-way tensor analysis is more suitable
for EEG feature extraction. In this paper, we propose a
novel algorithm, called common tensor discriminant anal-
ysis (CTDA), to solve the supervised subspace learning by
encoding each EEG epoch as a M-order tensor. A tensor-
based discriminant analysis framework is presented for si-
multaneous optimization of a series of projection matrices
based on tensor analysis theory and CSP criteria. Further-
more, CTDA has been extended to multiclass case. Exper-
imental results demonstrate the effectiveness and superior-
ity of our proposed algorithms.

1. Introduction

Recently, multilinear algebra, the algebra of high-order
tensors, was applied for analyzing the multifactor structure
image ensembles, EEG signals [1] and etc. These methods,
such as tensor PCA [2], tensor LDA [3, 4], tensor subspace
analysis [5, 6, 7], treat original data as second- or high-
order tensors. For supervised feature classification [8], the
tensorization can lead to structured dimensionality reduc-
tion by learning multiple interrelated subspaces. Discrimi-
nant analysis using tensor representation [9] can avoid the
curse of dimensionality dilemma and overcome the small
sample size problem .
As we know, EEG classification [10], especially motor

imagery based EEG classification, attracts much attention
recently as a result of the increasing demand for develop-
ing BCI systems. Previous studies demonstrated that CSP
algorithm has been successfully used in EEG classification
[11, 12] and BCI by optimizing discriminative spatial fil-
ters for two classes data. However, most non-motor im-
agery tasks are still difficult to be classified because of un-
sufficient discriminant information. There are several fac-
tors e.g., spatial, frequency, and time, that mostly affect the
recognition accuracy. In order to preserve more discrimi-
native information from original EEG signals, high order
tensor is more suitable for EEG representation.
In this paper, we propose a novel tensor subspace learn-

ing algorithms, termed common tensor discriminant anal-
ysis (CTDA), as an extension of CSP method for high or-

der tensor data. We develop a new general framework of
simultaneous optimization of projection matrices on multi-
factors for M-order EEG tensor representation. Further-
more, CTDA has been extended to multi-class case.
To demonstrate the proposed method, instead of focus-

ing on motor imagery EEG experiments, we are interested
in comprehensive coginitive mental tasks such as visual
and auditory imagery [13], which is difficult to be classi-
fied by CSP. Experimental results demonstrate that CTDA
benefits from its encouraging properties and achieves com-
petitive EEG recognition performance.

2. Common tensor discriminant analysis

As a supervised learning method, CTDA algorithm is
trained on labeled tensor data, i.e., a set of M-order ten-
sor samples Xi ∈ RN1×...×NM , i = 1, . . . , n which belong to
several different classes. Firstly, we can define the mode-M
covariance tensor (i.e., high order covariance) as

R = 1
n

n∑
i=1

[[Xi ◦ Xi; (M)(M)]], (1)

where R ∈ RN1×...×NM−1×NM−1...×N1 is a 2(M − 1) order ten-
sor which has a symmetric length on first M − 1 and last
M − 1 mode. ◦ and [[•]] are tensor outer product and tensor
contraction operations defined in[3].
According to CSP objective functions[11], letW(c) rep-

resents the maximal discriminative pattern for the c-th
class, and X(c) denotes connected training EEG epoch
which belongs to the c-th class. Then, we have

W(c)TR(c)W(c) = D, W(c)T
⎛⎜⎜⎜⎜⎜⎝
C∑
c=1

R(c)
⎞⎟⎟⎟⎟⎟⎠W(c) = I. (2)

Based on R(c) = X(c)X(c)T and tensor contraction theory,
we can further rewrite Eq.(2) as,[[

(X(c) ×1W(c)T ) ◦ (X(c) ×1W(c)T ); (2)(2)
]]
= D,

and
C∑
c=1

[[
(X(c) ×1W(c)T ) ◦ (X(c) ×1W(c)T ); (2)(2)

]]
= I.

(3)
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LetX(c)i ∈ RN1×...×NM denote the i-th training sample (i.e.,
i-th epoch), which is a M-order tensor. Similarly, let X(c)
denotes connected EEG tensors which belong to c-th class,
then we define multi-modal projections as,

Z(c) = X(c)
M−1∏
k=1

×kWk
T . (4)

where Wk |M−1k=1 denote k-th projection matrix on M − 1
modes respectively, and each of projecting matrix only
retains Hk projection directions corresponding to Hk/2
largest variance and Hk/2 smallest variance directions.
Based on analogy with Eq.(3), we define CTDA by re-

placing X(c), D and I with X(c),D ∈ RH1×...×HM−1×HM−1×...×H1
and I ∈ RH1×...×HM−1×HM−1×...×H1 respectively, then we obtain

[[
Z(c) ◦ Z(c); (M)(M)

]]
= D,

C∑
c=1

[[
Z(c) ◦ Z(c); (M)(M)

]]
= I. (5)

The problem defined in Eq.(5) does not have a closed form
solution, so we choose to use the alternating projection
method, which is an iterative procedure, to obtain a numer-
ical solution. Therefore, Eq.(5) is decomposed into M − 1
different optimization sub-problems, as follows,

[[
Z(c) ◦ Z(c); (l)(l)

]]
= Dl, l = 1, . . . ,M − 1;

C∑
c=1

[[
Z(c) ◦ Z(c); (l)(l)

]]
= Il, l = 1, . . . ,M − 1.

(6)

This can be interpreted as the tensor data X(c) are filtered
on M−1 modes by matricesW(c)

k |M−1k=1 respectively and ma-
tricized on each l-th mode would be diagonal matrices of
Dl, Il ∈ RHl×Hl .
To further explore each sub-problem in Eq.(6), we define

Y(c) = X(c)
M−1∏
k=1
k�l

×kWk
T . (7)

then we can obtain

W(c)
l

T [[Y(c) ◦ Y(c); (l)(l)]]W(c)
l = Dl,

W(c)
l

T

⎧⎪⎪⎨⎪⎪⎩
C∑
c=1

[[
Y(c) ◦ Y(c); (l)(l)

]]⎫⎪⎪⎬⎪⎪⎭W
(c)
l = Il.

(8)

To simplify Eq.(8), we define

U(c)l =
[[
Y(c) ◦ Y(c); (l)(l)

]]
and Tl =

C∑
c=1

U(c)l . (9)

Thus, Eq.(8) can be written as

W(c)
l

T
U(c)l W

(c)
l = Dl, W(c)

l

T
TlW

(c)
l = Il, (10)

where l ∈ [1 : M − 1], c ∈ [1 : C], and W(c)
l denotes

projectionmatrix on l-th mode for c-th class. Hence, CDTA
optimization problem is equivalent to M − 1 sub-problems
in Eq.(10) which can be solved by two step PCA method.
Finally, we can combine theW(c)

l corresponding to each c
class as:

Wl = [W
(1)
l , . . . ,W

(C)
l ], l = 1, . . . ,M − 1. (11)

Therefore, for theM order training tensorsX, CTDAwould
obtainM−1 optimal projection matricesWl|M−1l=1 by solving
the M − 1 alternative sub-problems defined in Eq.(10).
Once we obtain the projection matrices based on CTDA,

the projection of M-order tensor data X is given as

Z = X
M−1∏
l=1

×lWl
T . (12)

The feature vector of tensor dataX ∈ RN1×N2×...×NM used for
classification is composed of the H1 × . . .×HM−1 variances
normalized by the total variance of the projections retained,
and log-transformed,

f = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag
[
ZT
(M)Z(M)

]

tr
[
ZT
(M)Z(M)

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (13)

3. EEG classification during visual and auditory im-
agery tasks

The motivation for our experiments is that even though
motor imagery tasks are effectively used in BCI systems,
they may be difficult to perform for a person who has been
paralyzed for several years. Also it has been shown that pa-
tients with spinal chord injuries do not perform motor im-
agery tasks as well as able-bodied persons. Furthermore,
it’s very promising to find more comprehensive coginitive
based imagery tasks which can be classified from EEG sig-
nals. Therefore, we choose two cognitive tasks of visual
imgery (VI) and auditory imagery (AI) to evaluate the ef-
fectiveness of CTDA. To classify two imagery tasks, EEG
signals are firstly tansformed to a tensor representation,
then we apply CTDA algorithm for feature extraction based
on tensor training samples and linear support vector ma-
chines (SVM) for classification.
In the experimental sessions used for the present study,

labeled trials of EEG signals were recorded in the follow-
ing way: the subjects were sitting in a comfortable chair
with arms lying relaxed on the armrests. Each trial consists
of 10s for relaxation and 10s for cognitive tasks following
visual cue stimulus. During the VI period, the subject was
instructed to imagine some familiar visual scenes one by
one. The familiar visual scenes can be any rooms or any
furnitures in their home. During the AI period, the subject
was asked to think of a favorite song or a familiar tune that
they enjoyed. They were instructed to “ listen ” to it in
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their head, without mouthing the words or moving any part
of their body.
EEG signals were recorded from 62 electodes on scalp

according to 10-20 system with a sampling rate of 250Hz.
In order to consider multi-factors information simultane-
ously, the EEG are transformed using a Morlet continuous
wavelet transform (CWT) with center frequency ωc = 1
and bandwidth parameter ωb = 2. The frequency band
of 5-30Hz is thus adopted for establishing time-frequency
transform in CWT. Then, we obtain EEG tensor represen-
tation X ∈ RNd×Nf×Nt which is a three-way time-varying
EEG wavelet coefficients array, where Nd ,Nf ,Nt are num-
ber of channels, number of frequency bins, and time points,
respectively.
As expected, by simultaneous optimization on multi-

way tensor, CTDA can obtain optimal spatial filters and fre-
quency patterns which contain the most discriminative in-
formation. For further illustrations of the proposedmethod,
we will pick one specific dataset of one subject to visualize
the projection patterns on each mode which are obtained
by CTDA method. Fig.1 represents spatial projection ma-
trices W(c)

1 , c = 1, 2. There are two groups which denote
the spatial projection matrices for two classes, i.e., VI and
AI respectively. It’s obvious that VI focuses on occipital
area while AI focuses on temporal area which is close to
ears. Meanwhile, CTDA can learn optimal discriminative
frequency patterns for the specific imagery task (see fig.2).

(a) First spatial filter for VI (b) First spatial filter for AI

Figure 1: The largest spatial filters on scalp map for two
imagery tasks.

Hence, we can conclude that after spatial projection on
occipital area and frequency projection about 24-30Hz, the
variance along time dimension are largest during VI task,
while the variance are smallest during AI task. On the other
hand, AI task has maximal variance for spatial projection
on temporal area and frequency projection around 18Hz,
meanwhile VI task has minimal variance for the same pro-
jection patterns. This illustrates that the different cogini-
tave tasks not only have distinct spatial distribution but
also have distince frequency distribution. The results in-
dicate that the frequency information are not only subject-
dependent but also class-dependent. Therefore, these fre-
quency patterns can provide further discriminative infor-
mation which can not be obtained by only spatial filters.
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Figure 2: The largest filters in frequency domain for two
imagery tasks. VI mainly focuses on 24-30Hz (high β
rhythm), while AI mainly focuses around 18Hz (low β
rhythm.

After we obtain optimal projections from CTDA, the
EEG epoches can be projected using Wl and the feature
vectors are calculted according to Eq.(13). Fig.3 illustrates
the averaged feature vectors for each of two classes. It’s
clearly shown that two imagery tasks can be seperated by
these optimal features with the number of features are 8 (2
maximal patterns on spatial and frequency modes for each
of two classes). In the end, the 5×5-fold cross validation
results for two subjects with two cognitive tasks (i.e., VI
vs. AI) are presented in Table.1.
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Figure 3: Averaged feature vectors for two imagery tasks.

Table 1: Classification accuracies[%] and iterative numbers
for CTDA.

Subject Iterative Number Accuracy
SA 9 89.0 ± 1.9
SB 10 82.3 ± 2.2

So instead of having a spatial projection onto a broad
frequency band signal as a solution given by CSP, CTDA
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can split information furthermore by projecting onto multi-
frequency signals of the same local origin, stemming from
different sub-bands, such that each projection fulfills the
optimization criterion of maximizing the variance for one
class, while having minimal variance for the sum of all
classes. Summarizing, this yields an improved spatio-
frequency resolution of the discriminative signals. There-
fore, by combining the tensor representations of EEG and
CTDA, more discriminative information hidden in raw sig-
nals can be obtained automatically by learning optimal pro-
jections on multi-dimensions simultaneously.
As compared with CSP, CTDA helps to reduce the num-

ber of parameters needed to model the data. For example,
when a tensorX has the size N1× . . .×NM , we need to esti-
mate the projection matrixW with the size N1 . . .NM−1×H
by vectorization operation and CSP, but we only need to es-
timate the projection matricesWk |M−1k=1 with the correspond-
ing size Nk × Hk, k = 1, . . . ,M − 1 in CTDA.

4. Conclusions

In this paper, we have developed a supervised tensor-
based learing framework so that they accept M-order ten-
sors as inputs. Experimental analysis for EEG classifica-
tion during two cognitive tasks (i.e., visual and auditory
imagery) demonstrates the good performance and the ad-
vantages of proposed algorithm.
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