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Abstract 
We study a symbolic regression technique to infer the 

equations of systems from the observed numerical data. 
Our method is based on the AI-Feynman, proposed by 
Udrescu et al., which uses neural networks to detect 
features of the data, and genetic programming, which is an 
efficient formula search method that mimics biological 
evolution. In this study, we show that our method can 
successfully infer simple equations from measurement data 
with the aid of the AI-Feynman. 
 
1. Introduction 
Behind a seemingly complex phenomenon may lie a 

simple mathematical formula. However, the method for 
discovering such equations is not simple. It is one of the 
most important challenges for physicists to find equations 
that adequately describe a phenomenon from observational 
data alone. Recent advances in machine learning 
technology have made it possible to numerically map 
observed data onto inferred data, however, the input-output 
relationship is described as a black box and is difficult for 
humans to understand. If the relationship can be expressed 
in a simple form that is understandable for human beings, 
it will not only advance our understanding of the subject, 
but also greatly reduce the number of models describing the 
phenomenon. Symbolic regression has recently been 
attracting considerable attention as an approach to equation 
discovery, and commercial software, such as Eureqa and 
Turing Bot, have been developed [1,2]. Symbolic 
regression has the potential to be used not only for 
analyzing actual phenomena, but also for understanding 
black boxes such as neural network (NN) and improving 
simulation speed, since it has the potential to convert input-
output relationships into simple symbolic representations 
that are easy to interpret and computationally inexpensive 
[3]. 

Recently, AI-Feynman was proposed by Udrescu et al. as 
a method for symbolic regression [4,5]. This method is 
expected to discover laws of separability and symmetry 
from a trainig dataset consisting of input and output data 
pairs, and to find equations efficiently. However, this 
method uses Brute Force as the final search method, which 
is less efficient than genetic programming, which has been 
used as a method for inferring equations from data. 
Therefore, in this study, we combine the two techniques , 
genetic programming and AI-Feynman. We show that by 
pre-processing data with the aid of AI-Feynman's method, 
a simple equation can be well inferred from observed 
numerical data. 
 
2. Method 
As shown in Fig. 1, our proposed method consists of two 

steps: preprocessing of the observed data and an algorithm 
for formula discovery. The former is done using the AI-
Feynman and the latter using genetic programming. 

 

 
2.1. Law detection and data conversion 
AI-Feynman is used to detect the laws of symmetry and 

separability in the input-output data pairs and to create new 
data for which equations can be easily obtained by 
symbolic regression. Symmetry and Separability are 
expressed by Eq. (1) and Eq. (2), respectively. 

 

Fig. 1.  The Algorithm Flow. 
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𝐹(𝑥!, 𝑥", … , 𝑥#) = 𝐹(𝑥! + 𝑥", 𝑥$, … , 𝑥#) (1) 
𝐹(𝒙𝑨, 𝒙𝑩) = 𝑔(𝒙𝑨) + ℎ(𝒙𝑩) (2) 

Where 𝑥' ∈ ℝ is the input value for i-th index, 𝐹(𝒙) is the 
output value, and 𝑀 ∈ ℕ is the number of features. Eq. (3) 
and Eq. (4) are used to detect symmetry and separability, 
respectively. 
 

𝐹(𝑥!, 𝑥", … , 𝑥#) = 𝐹(((𝑥! + 𝛼, 𝑥" − 𝛼,… , 𝑥#	) (3) 
𝐹(𝒙𝑨, 𝒙𝑩) = 𝐹(((𝒙𝑨, 𝑪𝑩) + 𝐹(𝑪𝑨, 𝒙𝑩) − 	𝐹(𝑪𝑨, 𝑪𝑩) (4) 

 
Where 𝐹(((𝒙) ∈ ℝ is a NN approximation of 𝐹(𝒙), and 𝐶', 
𝛼  are constants. In this way, data points that are not 
included in the teacher data are complemented by the 
approximation by NN. In addition, by changing the 
operator of the detection formula, symmetry and 
separability corresponding to the four arithmetic operations 
can be detected. For example, when symmetry of addition 
is detected, the variables are compressed by re-creating the 
features of 𝑥!" =	𝑥! + 𝑥". When separability is detected, 
it is possible to split the data as 𝑔(𝒙𝑨) = 𝐹(((𝒙𝑨, 𝑪𝑩) and -
ℎ(𝒙𝑩) = 𝐹(((𝑪𝑨, 𝒙𝑩). The discovery of these laws and 
data processing facilitates formula discovery using genetic 
programming. 
 
2.2. Genetic Programming 
Genetic programming (GP) is a type of symbolic 

regression using genetic algorithms (GA). GA is a search 
method that mimics biological evolution, in which a 
randomly generated initial population is subjected to 
selection and evolutionary processes to discover better 
individuals through successive generations. A feature of GP 
is to represent an equation with a tree structure, as shown 
in Fig. 2. 
 

 
Each node of the tree structure has the role of an operator 
or variable and is treated as a gene in the algorithm. The 
loss of the assignment of teacher data to an individual is the 
degree of adaptation to the environment, and the lower the 
loss, the more likely the individual is to remain in the next 
generation. The remaining individuals undergo an 
evolutionary process through mutation and crossover to 
produce the next generation. This process of selection and 
evolution is repeated to find a better equation.  
There are two major types of evolution, as shown in Fig. 

3. The first is crossover, in which two selected individuals 
exchange trees below a certain node. The second, mutation, 
changes a selected node of one individual to another. The 

algorithm stops when an individual with losses below a 
threshold is produced or when a defined generation is 
reached. 
 

 

 

Fig. 2. GP tree example 

Fig. 3. Evolutions. (a) Cross over. (b) Mutation. 

  (a) 

  (b) 

Fig. 4. Flow of Eq. (5). 
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3. Result example 
Fig. 4 shows the flow for discovering an equation from 

the observed data points. As the example of equation-
discovery using the proposed method, we here consider 
the input-output data pairs produced by the following 
equation:  
 
𝐹(𝑥!, 𝑥", 𝑥$) = −63.5𝑥! − 62.9𝑥" + 629 cos$ @𝑥$ −

𝜋
4B .

(5) 
 
First, the dataset is divided into three datasets after 
detecting Separability of the addition method by using the 
AI-Feynman. Then, GP is used to find the equations 𝑓!, 𝑓", 
and 𝑓$ for each of the split datasets. GP is also used to find 
the relationship connecting 𝐹 and each 𝑓'. Finally, the 
relationship among the equations is analyzed, and we can   
obtain the following equation:  
 

𝐹D(𝑥!, 𝑥", 𝑥$) = −62.8𝑥! − 60.0𝑥"
+630 sin(𝑥$) cos(𝑥$) + 298, (6)  

which has a similar form with the original equation (Eq. 
(5)). Figure 5 shows a comparison of 𝐹(𝑥!, 𝑥", 𝑥$) shown 
in Eq. (5) and 𝐹D(𝑥!, 𝑥", 𝑥$) shown in Eq. (6). We can see 
the similar outputs.  
The other inferred equations and the Normalized Mean 

Squared Error (NMSE) for the training data are shown in 
Table 1. The original equations can be inferred with 
relatively low NMSEs. 
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Original equation Inferred equation NMSE 
3(𝑥! + 𝑥") + 2𝑥#𝑥$ 2.73(𝑥! + 𝑥") + 2𝑥#𝑥$ − 0.342 0.00691 

6.67𝑥!𝑥"
(𝑥# − 𝑥$)#

 
7.57𝑥!𝑥"
(𝑥# − 𝑥$)#

 0.253 

𝑥!# + 𝑥"# 𝑥!# + 𝑥"# 0 
log(2𝑥!) + 3𝑥" log(2𝑥!) + 2𝑥" − 1.18	 0.147 

2 tanh(x!) − 3 cos(𝑥") 2 tanh(𝑥!) + sin	(tanh	(𝑥!)) − 2.89 cos(𝑥") − 0.05 0.00318 
−10(𝑥! − 𝑥") −10(𝑥! − 𝑥") + 0.0524 1.52e-6 

−63.5𝑥! − 62.9𝑥" + 629 cos# =𝑥# −
𝜋
4? 

−62.8𝑥! − 60.0𝑥" + 630 sin(𝑥#) cos(𝑥#) + 298  0.000331 

Table. 1. Comparison of Original equation and Inferred equation. 

Fig. 5. Comparison of Eq. (5) and Eq. (6). 
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