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Abstract—We devised a method to assess the local sta-
bility of action potential propagation in cardiac tissue using
coupled iterated maps of propagation velocity and action
potential duration. The method is illustrated using simula-
tions of propagation in chains of Luo-Rudy cell models and
electrophysiological recordings from patterned strands of
cultured neonatal rat ventricular myocytes. We de-stabilize
conduction by decreasing extracellular potassium concen-
tration. A first-order linear model gives a good description
of the observed dynamics for both the control and the low
extracellular potassium situation.

1. Introduction

In cardiac electrophysiology the term “restitution” des-
ignates the rate-dependent behavior of the action potential
(AP). Restitution models describe cardiac dynamics using
iterated maps. Since the pioneering work of Nolasco and
Dahlen [8], who first described the relation between AP
duration (APD) and diastolic interval (DI) in cardiac tis-
sue as a first-order iterated map, several additional restitu-
tion models have been proposed. The logical extension was
to model propagation by restitution of conduction velocity
(CV) [2]. Later, observations that the stability of AP gener-
ation in single cells does not always depend on the slope of
the APD restitution model of Nolasco and Dahlen have led
to the introduction of higher-order APD restitution maps
[1]. Most recently, models have been proposed that incor-
porate intracellular calcium dynamics in the mechanisms
of APD restitution [9].

In this paper we present a method to assess restitution
characteristics by measuring transfer functions of the in-
tervals between successive AP wavefronts (interbeat inter-
vals; IBIs). We first give a closed form expression of the
transfer function of IBIs between two sites in cardiac tis-
sue (Sec. 2), based on first-order APD and CV restitution.
From a systems identification point of view, an input signal
incorporating random variations with a broad spectrum is
an efficient signal to identify the underlying dynamics of
the system. This then makes a signal with a Gaussian vari-
ation around some mean basic cycle length (BCL) an obvi-
ous choice as an input signal to measure the transfer func-
tions in simulations and in vitro (Sec. 3). We illustrate the
method by determining the transfer functions of IBI in sim-
ulations of a strand of Luo-Rudy model cells (Sec. 4.1) and
in cultured strands of rat ventricular myocytes (Sec. 4.2).

Finally we show that our method allows estimation of APD
restitution properties without measuring APD (Sec. 4.3).

2. Theory: Cardiac restitution as a transfer function

We hypothesized that for our cultures of rat ventricular
myocytes, linear first-order APD and CV restitution is an
appropriate model to predict the observed dynamics. We
consider regularly paced cardiac tissue with a series of
pulses with certain IBIs (see Fig. 1).
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Figure 1: Relation between the different variables describ-
ing the AP.

Calling the time series of subsequent APDs a, the time
series of DIs d and the time series of IBIs t, the first order
restitution relation of APD is

an+1 = f(dn). (1)

Under periodic stimulation with IBI=BCL, this relation can
be linearized around its working point. We call the deriva-
tive of (1) in the working point α.

Using the fact that, by definition, tn = dn+an, and writ-
ing δd and δa for small variations of DI and APD around
the working point, we obtain the linearized APD restitution
relation from (1) as δtn+1− δdn+1 = α δdn. Applying the
Z-transform to this relation, with T the Z-transform of t
and D the Z-transform of d, and solving for D/T , gives
the transfer function for the evolution of the variations of
the DI as a function of variations δt of the IBI around its
working point:

Ht→d(z) =
D(z)
T (z)

=
z

z + α
. (2)

The first-order system relating DI to IBI has a pole at −α
and a zero at the origin.

Now suppose that AP wavefronts are passing through
cardiac tissue and we measure the IBIs at two sites suffi-
ciently far away from the boundaries such that we can ig-
nore boundary effects. We assume a first-order difference
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relation between CV—denoted by the variable c—and the
previous DI:

cn+1 = g(dn). (3)

This relation can again be linearized for a specific working
point with IBI=BCL. We call the derivative of (3) in the
working point γ.

Now consider the elements of the time series c, d and
t to be functions of the distance x along the path between
the two measurement sites, with x = 0 at the first measure-
ment site and x = L at the second measurement site. We
suppose that the tissue is homogeneous, i.e., that APD and
CV restitution do not depend on x. The conduction time
to cover an infinitesimal segment of length dx is dx/cn(x)
for the nth AP and dx/cn+1(x) for the n+ 1st AP, and the
IBI between those APs changes by

dtn(x)
dx

=
1

cn+1(x)
− 1
cn(x)

. (4)

Using the chain rule and (3), we see that the derivative of
1/cn+1(x) = 1/g(δdn) in the working point is −γ/c2ss,
with css the steady state CV. Therefore the linearization of
(4) around the working point is:

dtn(x)
dx

= − γ

c2ss
(δdn − δdn−1) (5)

The formulation of (5) is a distributed parameter model
[5]. By applying the appropriate transform, a transfer func-
tion between different points x can be obtained, which is
an analytic function of z, though not rational as the tradi-
tional transfer function. Applying the Z-transform to (5)
and using (2), we obtain the ordinary differential equation

dT (z, x)
dx

=
γ

c2ss

(
z−1 − 1

)
D(z, x)

=
γ

c2ss

1− z
z

Ht→d(z)T (z, x).
(6)

In this equation we used the APD restitution transfer func-
tion Ht→d, which, as mentioned before, we suppose to be
independent of x. By integrating (6) we obtain the transfer
function of interbeat intervals for propagation between the
site x = 0 and the site x = L as:

Ht(z) = exp
(
γL

c2ss

1− z
α+ z

)
. (7)

Note that this relation gives an estimation of both γ and
α. Since Ht can be obtained from extracellular measure-
ments of activation times, this gives a way of estimating
APD restitution without actually measuring APD.

3. Methods

3.1. Numeric simulations using the Luo-Rudy ionic
model

Conduction was simulated in a 1 cm long fiber of 100
Luo-Rudy model cells [6]. To obtain CVs and APDs in the

range of those observed in cultures of neonatal rat ventric-
ular myocytes, the maximal sodium current conductance
(gNa) and the slow inward current conductance (gsi) were
reduced to 8 and 0.04 mS/cm2, respectively [10, 7]. Fur-
ther details about the model and the numerics are provided
in a previous publication [7].

The fiber was paced at one extremity (see Sec.3.3). Ac-
tivation times were defined by depolarization to -35 mV
during the AP upstroke and APD was measured at repolar-
ization to -80 mV. IBIs were established at x = 0.25 cm
(input) and x = 0.75 cm (output).

3.2. In vitro preparations

Patterned strands of ventricular myocytes (width: 150
µm) from 1-2 days old Wistar rats were prepared and
grown on microelectrode arrays as described previously
[4]. The strands were grown on rows of 6 or 12 electrodes
(spacing: 1.2 or 0.5 mm, respectively) or on meandering
paths of 60 electrodes (spacing 1.2 mm), with one stimula-
tion dipole at the beginning. Experiments were performed
on 3-5 days old cultures in Hanks’ balanced salts solution
(HBSS) and at 36 ◦C. In certain experiments, the extra-
cellular potassium concentration ([K+]o) of the HBSS was
reduced to 1.5 mmol/L. Signals were sampled at 10 kHz
and activation times were defined at the occurrence of the
minimum of their first derivative [4].

3.3. Pacing protocol

The stimulation protocol used in this work is shown in
Fig. 2. To establish steady state conditions in the model

time

IB
I

60-120 s 60-120 s

Figure 2: Stochastic stimulation protocol.

as well as in the experiments, the cell strands were ini-
tially paced at a given BCL until all transients had stabi-
lized. Subsequently stochastic pacing was applied: IBI was
varied randomly around BCL with a Gaussian distribution
characterized by a predefined standard deviation σ. The
stochastic protocol was applied for 256 cycles in the simu-
lations or during 1-2 min in vitro.

3.4. Automatic fitting of the transfer functions

There exists systematic methods to fit distributed param-
eter models like (5) to data [5], but they are usually quite
elaborate. Since (5) is relatively simple, with only two
parameters, we used the ready-implemented brute-force
optimization algorithms from the MATLAB Optimization
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Figure 3: (A) Transfer functions of Luo-Rudy model strands at different BCLs. (B) Transfer functions of cultured strands
under control conditions (top) and in low [K+]o (bottom), at BCL=150 ms, L = 0.96 cm.

Toolbox. We used the line-search algorithm, with initial pa-
rameter values randomly distributed in the interval of plau-
sible values. The validity of the approach was verified by
performing multiple repetitions of the optimization, with
different initial parameter values, which did not lead to a
significant change in the outcome.

4. Results

We estimated transfer functions of IBIs in simulations of
a strand of Luo-Rudy model cells as well as in extracellular
measurements of cultured strands by computing the ratio
of the Welch cross power spectral density of the output and
input to the power spectral density of the input. We then fit
the transfer functions with (5). The transfer functions are
shown in Fig. 3 in the form of Bode plots.

The scale of the frequency-axes of the Bode plots is
skewed by considering the transfer function H(z) along
the contour z = ej2πf in the z plane. The contour is
then mapped to the (positive) imaginary axis. This trans-
formation allows Bode plots of discrete-time systems to be
constructed and interpreted in the same way as those of
continuous-time system, e.g., poles cause a 20 dB/decade
decrease of the slope of the transfer function and zeros in-
side the unit circle a 20 dB/decade increase [3].

4.1. Transfer functions of Luo-Rudy model strands

The black lines in panel A of Fig. 3 show the com-
puted transfer functions for the simulations of the Luo-
Rudy model strand. The stochastic protocol was applied
for four different BCLs. The gray lines are the fits of (5) to
the black curves.

For decreasing BCL the pole in the transfer functions
shifts to higher frequencies, as is evident from the right-

ward shift of the dropoff of the transfer function. This cor-
responds to α approaching unity for decreasing BCL, as is
usual.

On the other hand, the attenuation at higher frequencies
increases for lower BCLs. This corresponds to increasing
γ. The physiological interpretation is that at pacing rates
closer to the maximal possible rate, CV restitution atten-
uates higher frequencies and therefore any deviation from
BCL. This stabilizes conduction at higher beat rates, coun-
teracting the destabilizing effect of APD restitution at low
BCL.

4.2. Transfer functions of cultured cell strands

It is clear that a possibly dangerous situation can emerge
when γ becomes negative. In this case the higher frequen-
cies are amplified, instead of attenuated. This situation can
occur when extracellular potassium concentration is de-
creased. Figure 3, B shows the transfer functions of IBI
in strands of rat ventricular myocytes as measured under
normal conditions ([K+]o=5.8 mmol/L) and in low extra-
cellular potassium ([K+]o=1.5 mmol/L).

It can be seen that the fits of (5) (gray lines) also form
a good approximation of the measured transfer functions
(black traces) for the experimental results. For low ex-
tracellular potassium, higher frequencies are amplified and
the phase is non-minimal. The amplification is maximal
at half of the BCL, which is the frequency of alternans, a
phenomenon which is considered a risk factor for sudden
cardiac death.
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4.3. Using the transfer functions to predict the slope of
APD restitution

The slope of the first-order APD restitution is considered
an important indicator for alternans. In vivo as well as in
our preparations it is difficult to measure APD directly, but
the transfer functions presented in this work can be deduced
from two-site measurements of activation times along the
axis of propagation. The transfer functions can in principle
give information about both APD and CV restitution (both
α and γ appear in (5)). To evaluate the precision of the
assessment of APD restitution by extraction of α from the
transfer function, we used our simulations, in which we do
have access to APD.

�
S

to
c
h

�
Direct

BCL=90
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BCL=180

Figure 4: Comparison between APD restitution slopes in
Luo-Rudy model strands as measured directly and as de-
rived from the fitted transfer functions.

Figure 4 shows a comparison between the APD resti-
tution slopes α as extracted from the transfer functions
by fitting (5) as shown in Fig. 3, A (αStoch) and as mea-
sured directly (αDirect). All four points lie almost perfectly
on the line αStoch = αDirect (linear regression: αStoch =
1.0335αDirect + 0.0137 with r > 0.9999). This shows that
in simulations of Luo-Rudy model strands the APD resti-
tution slope can be accurately determined from the transfer
function.

5. Conclusions

The propagation of action potentials through cardiac tis-
sue can be represented by a transfer function of a linear
distributed parameter system. This transfer function can
be conveniently obtained from measurements of activation
times at two different sites in the tissue. The transfer func-
tion then gives information about the restitution properties
of cardiac tissue, which are important for the stability of
conduction and therefore for the risk assessment of arrhyth-
mias and sudden cardiac death.

We propose a stochastic pacing protocol to measure
transfer functions. The advantage of such a stimulation
protocol as compared to more traditional protocols (which
typically focus on directly measuring dynamical aspects
like the slope of restitution functions) is that it gives more

information about the dynamics, it can be shorter in dura-
tion, and it is power-efficient.

We showed that a transfer function including only first-
order restitution characteristics fits the measured transfer
functions reasonably well, in both our simulations and ex-
periments. Using the simulations we show that the first-
order transfer function, which can be obtained without ex-
plicitly measuring APD, can give a good estimation of
APD restitution slopes.
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