
Bilateral Filtering Using Constant-Time Convolution

Masaki Igarashi†, Masayuki Ikebe‡, Sohsuke Shimoyama† and Junichi Motohisa‡

†‡Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan

Email: †{igarashi, simoyama}@impulse.ist.hokudai.ac.jp, ‡{ikebe, motohisa}@ist.hokudai.ac.jp

Abstract—We propose a constant-time algorithm for bi-
lateral filter. Bilateral filter can be converted into operation
of three-dimensional (3D) convolution. By formulation of
moving sum using recurrence formula, we can reduce the
number of calculation needed to construct pseudo Gaus-
sian filter. Applying one-dimensional Guassian filter to the
3D convolution, we achieved constant-time bilateral filter.
We used a 3-GHz CPU without downsampling, SIMD in-
structions, or multi-thread operations. We confirmed our
proposed bilateral filter is processed in constant time. In
some conditions, high PSNR over 40 dB is obtained.

1. Introduction

In the field of image processing, image filters are widely
used for the various purpose such as noise reduction, image
enhancement and edge detection. Tomasi et al. proposed a
bilateral filter which is an edge preserving smoothing filter
[1]. It has been used for several applications such as noise
reduction, dynamic range compression [2], and estimation
of illuminance in Retinex [3]. The output images are ob-
tained by using weight averaging in the spatial and range
(intensity) domains.

Until recently, the bilateral filter was computationally
expensive because brute-force implementation has a O(n2)
computational cost per output pixel (n: filter size). Sev-
eral studies have been made on speeding up of the bilateral
filter. Porikli proposed the O(1) bilateral filter using an in-
tegral histogram [5]. Yang et al. also proposed a O(1) algo-
rithm based on Durand’s method [2][6]. Paris et al. studied
the bilateral filter as 3D convolution. This method uses fast
fourier transform (FFT) for the convolution operation, so it
takes a large amount of calculation.

The purpose of this study is to propose the constant-
time algorithm for the bilateral filter by extension of Paris’s
method.

2. Bilateral Filtering

In this section, we explain the basis of the bilateral filter.
Main notation in this paper is summarized in Table 1.

The bilateral filter uses a spatial and a range kernel for
update of each pixel in an image. Let p ∈ S denote a pixel
position in the image, Ip be the intensity of pixel p. Bilat-

eral filter updates intensity value as follows:

Ibf
p =

1
Wbf

p

∑
q∈S

ws(p, q)wr(Ip, Iq)Iq

Wbf
p =

∑
q∈S

ws(p, q)wr(Ip, Iq) . (1)

where ws and wr are the weighting functions in the spatial
and range domains respectively. Usually, a constant and a
Gaussian weighting function are used for ws and the Gaus-
sian weighting function is used as wr.

Two dimensional (2D) bilateral filter can be rewritten as
3D convolution [4] as follows:

∀x, y, z ∈ S × R

I∗x,y,z =
{

Ix,y (z = Ix,y)
0 (z , Ix,y) (2)(

I′x,y,zW
′
x,y,z

W ′
x,y,z

)
=

∑
x′∈W

[
Gσs (x′ − x)

(
I∗x′,y,z

1

)]
(3)(

I′′x,y,zW
′′
x,y,z

W ′′
x,y,z

)
=

∑
y′∈H

[
Gσs (y

′ − y)
(
I′x,y′,z

1

)]
(4)

(
I′′′x,y,zW

′′′
x,y,z

W ′′′
x,y,z

)
=

∑
z′∈R

[
Gσr (z

′ − z)
(
I′′x,y,z′

1

)]
(5)

Ibf
x,y = I′′′x,y,Ix,y

. (6)

Table 1: Notation used in this paper
N Set of natural numbers
W,H Image width, height
W Set of x-coordinates: {0, 1, · · · ,W − 1}
H Set of y-coordinates: {0, 1, · · · ,H − 1}
S Spatial domain: W×H
R Range domain
p = (x, y) ∈ S Pixel position
Ip Brightness value at p
Gσ(x) One dimensional Gaussian: exp(− x2

2σ2)
σs, σr Standard deviation of Gaussian (space, range)
Ibf

x,y Result of the bilateral filter

3. Proposed Bilateral Filtering Method

In this section, we propose a method of bilateral filtering
using constant-time convolution.

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 472 -

Table 2: Weight map
sn s′n s′′n

1 1, 1, 1 1, 2, 3, 2, 1 1, 3, 6, 7, 6, 3, 1
r 2 1, 1, 1, 1, 1 1, 2, 3, 4, 5, 4, 3, 2, 1 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1

3 1, 1, 1, 1, 1, 1, 1 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1

3.1. Constant-Time Convolution

Let xn∈{0,1,··· ,N−1} denote data sequence, where N is the
length of the sequence. We define the moving sum sn which
calculates the summation from xn−r to xn+r as follows:

sn =

r∑
i=−r

xn+i (r ∈ N) , (7)

where r means radius. Here we are not concerned with han-
dling the elements located out of the sequence (xi<0, xi≥N)1.
We can convert Eq. (7) into recurrence formula:

s0 =

r∑
i=−r

xi

sn+1 = sn + xn+r+1 − xn−r . (8)

When calculating successive values, new sum sn+1 is cal-
culated by adding/subtracting two elements xn+r+1, xn−r

to/from the old sum sn, meaning a full summation each
time is unnecessary.

Then we define the moving sum s′n which calculates the
summation of sn as follows:

s′n =
r∑

i=−r

sn+i . (9)

Similarly, we can rewrite Eq. (9) as follows:

s′0 =
r∑

i=−r

si

s′n+1 = s′n + sn+r+1 − sn−r . (10)

We can obtain s′n+1 by adding/subtracting two elements
sn+r+1, sn−r to/from the old sum s′n. Similarly, we can define
s′′n which calculates summation of s′n , s′′′n and so on. The
calculation amount of these summation is independent of r
by calculating based on recurrence formula.

Let us focus on the weight on the data sequence.
Weighted sum such as s′n and s′′n can be expanded as fol-
lows:

s′n =
2∑

i=−2

sn+i =

2∑
i=−2

{xn+i−2 + xn+i−1 + xn+i + xn+i+1 + xn+i+2}

= xn−4 + 2xn−3 + 3xn−2 + 4xn−1 + 5xn

+ 4xn+1 + 3xn+2 + 2xn+3 + xn+4 . (11)
1This handling is dependent on the implementations (e.g. xi = x−i−1

or xi = 0 etc. if i < 0).

s′′n =
1∑

i=−1

s′n+i =

1∑
i=−1

{sn+i−1 + sn+i + sn+i+1}

=

1∑
i=−1

{xn+i−2 + 2xn+i−1 + 3xn+i + 2xn+i+1 + xn+i+2}

= xn−3 + 3xn−2 + 6xn−1 + 7xn + 6xn+1 + 3xn+2 + xn+3 .
(12)

The center weights such as coefficient of xn are large.
Meanwhile, the weights to the data apart from center tend
to be small. By extending sn and s′n to s′′n , s′′′n and using
average operation instead of summation, s′′′···n approaches
Gaussian filter according to central limit theorem. We show
the weight map in Table 2.

As stated above, s′′′···n is calculated in constant time and
gives Gaussian-like weight to data. Consequently, we can
achieve pseudo Gaussian filter processed in constant time
by using s′′′···n . We show a pseudo code of the algorithm for
pseudo Gaussian filter corresponding to s′′n in Procedure 1.

Procedure 1 Convolve(x, r): Pseudo Gaussian using
constant-time convolution (e.g. s′′n).
Input: Data array x, radius r
Output: Filtered data y

1: N ← length of array x
2: for n = 0 to N − 1 do
3: if n = 0 then
4: Initialize variables such that

g1LL ← s−2r−2, g1LR ← s−1,
g1RL ← s−1, g1RR ← s2r,
g2L ← s′−r−1, g2R ← s′r, g3 ← s′′0
based on definition.

5: else
6: The calculation amount of following operation is inde-

pendent of radius r.
7: g1LL ← g1LL + x[n − r − 2] − x[n − 3r − 3]
8: g1LR ← g1LR + x[n + r − 1] − x[n − r − 2]
9: g1RL ← g1RL + x[n + r − 1] − x[n − r − 2]

10: g1RR ← g1RR + x[n + 3r] − x[n + r − 1]
11: g2L ← g2L + g1LR − g1LL
12: g2R ← g2R + g1RR − g1RL
13: g3 ← g3 + g2R − g2L
14: end if
15: Normalize: y[n]← g3

(2r + 1)3

16: end for

We can adjust the standard deviation of Gaussian by con-
trolling the radius of moving sum. Equation 13 shows the

- 473 -

relation between radius r and standard deviation σ in the
case of s′′n .

σ =
2r + 1
√

2π
(13)

3.2. Constant-Time Bilateral Filtering Using Fast Con-
volution

According to Eq. (2-6), the bilateral filter is processed by
3D convolution. Paris et al. used FFT for 3D convolution.
On the other hand, we apply the method of the constant-
time convolution to the bilateral filter based on 3D convo-
lution. We present a pseudo-code of the algorithm for the
bilateral filter in Procedure 2.

Procedure 2 Fast bilateral filter using constant-time con-
volution.
Input: Image I, radius rs, rr
Output: Filtered image Ibf

1: for all x, y, z ∈ W ×H × R do
2: I∗[x][y][z]← I[x][y] if z = I[x][y], 0 else
3: W∗[x][y][z]← 1 if z = I[x][y], 0 else
4: end for
5: for all y, z ∈ H × R do
6: I′[:][y][z]← Convolve(I∗[:][y][z], rs)
7: W ′[:][y][z]← Convolve(W∗[:][y][z], rs)

Colon(:) operator indicates a specific 1D array re-
trieved from multidimensional data (e.g. I[:][y][z] means
I[0][y][z], I[1][y][z], · · · , I[W − 1][y][z])

8: end for
9: for all z, x ∈ R ×W do

10: I′′[x][:][z]← Convolve(I′[x][:][z], rs)
11: W ′′[x][:][z]← Convolve(W′[x][:][z], rs)
12: end for
13: for all x, y ∈ W ×H do
14: I′′′[x][y][:]← Convolve(I′′[x][y][:], rr)
15: W ′′′[x][y][:]← Convolve(W ′′[x][y][:], rr)
16: end for
17: for all x, y ∈ W ×H do

18: Ibf[x][y]← I′′′[x][y][I[x][y]]
W ′′′[x][y][I[x][y]]

19: end for

4. Experimental Results

We tested the proposed bilateral filter method and eval-
uated the processing time and image quality. These tests
were run on a PC with Intel Core i7 CPU (3.07 GHz) and
8GB main memory. Our implementation is written in C++.
We did not use downsampling, multithread operations, or
SIMD instructions. The implementation of Paris’s tech-
nique we used is available at his website2.

The computation times are given in Fig. 1. Our proposed
method is several faster than Paris’s one. Calculation time

2http://people.csail.mit.edu/sparis/bf/

of both methods became larger according to increase of im-
age size. Next, we examined the relation between the pro-
cessing time and standard deviation of Gaussian. Figure 2
shows the results of measurement. We found that the pro-
cessing time of the proposed method has less dependency
of the standard deviation. In the Paris’s method, however,
processing time varies according to the standard deviation.

We analyzed the filter accuracy by performing filtering
operation and by calculating the Peek Signal-to-Noise Ra-
tio (PSNR) defined in Eq. 14. For the analysis, the filtering
image with exact Gaussian spatial weight were set to the
source images. Table. 3 shows PSNR of bilateral filters
with pseudo Gaussian kernel (using s′′n). In some condi-
tions, high PSNR (over 40 dB) is obtained.

Figure 3 shows the result of applying the proposed
method to an image. We cannot distinguish between the re-
sulting images obtained by proposed method and exact im-
ages. We found that the proposed method achieved smooth-
ing, while preserving the edge.

 0

 20

 40

 60

 80

 100

 120

 140

320x240 480x360 640x480 800x600

P
ro

ce
ss

in
g

tim
e

(s
)

Image size

Paris’s method
Proposed method

Figure 1: Comparison of processing time between two
methods (natural image, σs = σr = 13.17).

 0

 20

 40

 60

 80

 100

 120

 15 20 25 30 35 40

P
ro

ce
ss

in
g

tim
e

(s
)

Standard deviation of Gaussian

Paris’s method
Proposed method

Figure 2: Relation between the processing time and stan-
dard deviation (natural image: 480×360).

- 474 -

Natural image (original) Proposed bilateral filter Exact bilateral filter

Architectural image (original) Proposed bilateral filter Exact bilateral filter

Figure 3: Filtered result on some images (natural, architectural). σs = σr = 6.8.

Table 3: PSNR accuracy [dB] of proposed method (natural
image: 480×360).

rs
2 4 8 16 32

2 58.1 59.7 60.6 61.0 61.5
4 56.6 57.9 58.1 58.0 57.7

rr 8 54.5 55.4 54.8 54.3 54.1
16 52.2 52.9 51.9 51.1 50.2
32 50.1 50.4 48.5 47.0 45.2

MSE =
1

WH

W∑
i=0

H∑
j=0

(Ii, j − Ji, j)2

PSNR = 20log10

(
255
√

MSE

)
(14)

5. Conclusion

We proposed a constant-time algorithm for bilateral
filter. By formulation of moving sum using recur-
rence formula, we can reduce the number of calculation
needed to construct pseudo Gaussian filter. Applying one-
dimensional Gaussian filter to the 3D convolution, we
achieved constant-time bilateral filter.

A further direction of this study will be to apply the
downsampling of image to our method. Then, we will
achieve the additional speeding-up of the proposed bilat-

eral filter.

References

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for
gray and color images,” In Proceedings of the Inter-
national Conference on Computer Vision, pp.839–846,
1998.

[2] F. Durand and J. Dorsey, “Fast bilateral filtering
for the display of high-dynamic-range images,” SIG-
GRAPH’02, pp.257–266, 2002.

[3] L. Edwin, ” Retinex Theory of Color Vision,” Scientific
American, Volume 237, pp.108–128, 1977.

[4] S. Paris and F. Durand, “Fast Approximation of the Bi-
lateral Filter using a Signal Processing Approach,” In
Proceedings of the European Conference on Computer
Vision, pp.568–580, 2006.

[5] F. Porikli, “Constant Time O(1) Bilateral Filtering,”
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pp.1–8, 2008.

[6] Q. Yang, K. Tan and N. Ahuja, “Real-Time O(1) Bi-
lateral Filtering,” IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp.557–
564, 2009.

- 475 -

	Navigation page
	Session at a Glance
	Technical Program

