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Abstract—High-dimensional nonlinear phenomena in
the field of natural sciences can often be explained as the
result of a synchronization phenomenon of coupled oscil-
latory systems. In this study, we investigate how distant
van der Pol oscillators coupled by resistors in a ring topol-
ogy may synchronize. Using computer simulations, we
find that distant oscillators can synchronize in-phase, anti-
phase, and at N/2-phase (where N is the number of oscil-
lators), in dependence of the oscillation frequency of adja-
cent oscillators.

1. Introduction

Synchronization phenomena can be observed in a wide
range of fields such as physics, chemistry, biology, neu-
roscience, engineering, and so on. Synchronization may
prove crucial in understanding - and mimicking in applica-
tions - decentralized information processing mechanisms,
as found, in particular, in the living nature. Therefore,
mathematical modeling studies of synchronization in os-
cillatory networks have become a topical issue [1]-[3]. As
particularly nice examples, Endo et al. have presented the
details of a theoretical analysis and corresponding circuit
experiments on electrical circuits oscillators arranged in a
ladder [4], a ring [5] and in a two-dimensional array topol-
ogy [6]. Moreover, coupled oscillatory systems can also
produce interesting phase patterns, including wave prop-
agation, clustering, and complex phase patterns [7]-[10].
Seto et al. [11] have observed interesting synchroniza-
tion phenomena when van der Pol oscillators with differ-
ent frequencies are coupled by means of a resistor, in a star
topology. This phenomenon is, however, restricted to small
networks: Oscillators coupled in a star topology fail to syn-
chronize if their number exceeds 4.

In our search for synchronization phenomena present
in large-scale networks, we have therefore concentrated
on van der Pol oscillators arranged in a ring topology,
where each oscillator has its own oscillation frequency. For
this arrangement, we found interesting nonlinear phenom-
ena such as oscillation death, independent oscillations and
double-mode oscillations [12]. Moreover, we have stud-
ied the interaction of van der Pol oscillators drawn from
two sets of distinct oscillatory frequencies, where, in de-

pendence of the different frequencies, we observed several
interesting synchronization phenomena [12]. So far, the
mechanisms of this type of group synchronization have,
however, remained only partially understood.

In the present study, we focus on synchronization phe-
nomena between distant van der Pol oscillators with differ-
ent frequencies that are coupled by means of resistors in
a ring topology. Using computer simulations, we find that
the distant neighbors oscillators are synchronized in-phase,
anti-phase or at N/2-phase, dependent on the oscillation
frequency of the adjacent oscillators.

2. Circuit Model

The basic circuit model and the topology according to
which the oscillators are arranged is shown in Fig. 1. In
order to study the synchronization on this topology, we de-
tune the frequency of each second oscillator by means of
changing its capacitance, proceeding cyclically through the
ring.
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Figure 1: Ring of van der Pol oscillators with different fre-
quencies.

We assume that the vk − iRk characteristics of the nonlin-
ear resistor in each oscillator is given by the following third
order polynomial equation

iRk = −g1vk + g3vk
3. (1)
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the normalized circuit equations of the ring of oscillators
finally read
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(k = 1, 2, · · · ,N),

(2)

where
ya0 = yaN , yb(N+1) = yb1. (3)

In this system of equations, ωk denotes the frequency of the
kth oscillator, γ corresponds to the coupling strength and ε
captures the nonlinearity of the oscillators. For the simu-
lations, we evaluated Eq. (2) using a fourth-order Runge-
Kutta method. For this setting, we obtained results as
shown and discussed in the following paragraph.

3. Synchronization phenomena when each second os-
cillator is detuned

3.1. N=4

In this case, the two types of oscillators with detunable
frequencies are placed alternately, as is shown in Fig. 2,
where α denotes the from the standard frequency ω = 1.0
detuned frequency. We now focus on the synchronization
between oscillator 1 and oscillator 3, which have the stan-
dard frequency (ω = 1.0), when the frequencies oscillator
2 and oscillator 4 are periodically changed to ω = α .
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Figure 2: Model circuit for N = 4.

The obtained results are collected in Figs. 3 and 4. In
these figures, the top rows show the attractors obtained
from oscillator 1 and oscillator 3, the middle row displays
the phase difference between the ith and the (i + 2)th oscil-
lator, whereas the bottom row shows the time wave-forms.
Figure 3 has been obtained for α = 0.64. In this case, the
oscillators 1 and 3 are almost synchronized in-phase. The
result obtained for α = 3.47 is shown in Fig. 4. Now, oscil-
lator 1 and oscillator 3 oscillators are almost synchronized

anti-phase, whereas oscillator 2 does not synchronize with
oscillator 4 at all.

Next, we calculated the phase difference between oscil-
lator 1 and oscillator 3 if the frequencies α of the oscil-
lators 2 and 4 are increased from 0.1 to 3.5. The results
shown in Fig. 5 demonstrate that when α is smaller than
0.5, non-synchronization is observed. Around α ' 1.0, in-
phase synchronization is obtained. By further increasing
the value of α, anti-phase synchronization can be triggered.
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Figure 3: Synchronization results for N = 4 (α = 0.64).

x1

y1

x2

y2

x3

y3

x4

y4

x1

x3

x2

x4

x3

x5

x4

x6

x1
x2
x3
x4

Attractor

Phase
difference

Time
wave 
form

Figure 4: Synchronization results for N = 4 (α = 3.47).
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Figure 5: Phase difference between x1 and x3, in depen-
dence of the frequencies of x2 and x4.
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3.2. N=6

Next, we consider a circuit model which is composed
of six oscillators, as shown in Fig. 6. The observed syn-
chronization phenomena for α = 0.64 are shown in Fig. 7.
From this figure, we infer that almost the same synchro-
nization phenomena as those observed for N = 4 emerge.
Namely, that any ith oscillator is almost in-phase synchro-
nized with the (i + 2)th oscillators, at the two oscillators’
inherent frequency.This synchronization pattern changes at
α = 3.47. In this case, the three oscillators with the stan-
dard frequency are synchronized at 120 degree phase dif-
ference (see Figs. 8,9).
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Figure 6: Circuit model for N = 6.
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Figure 7: Synchronization results for N = 6 (at α=0.64).
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Figure 8: Synchronization results for N = 6 (at α=3.47).

3.3. N=8, 10

Furthermore, we investigated what synchronization pat-
terns emerge if the number of coupled oscillators is set to
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Figure 9: Synchronization at 120 degree difference
(α=3.47).
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Figure 10: Phase difference between x1 and x3 in depen-
dence of the frequencies of x2, x4 and x6.

8 and 10, respectively. In the both cases, if we choose
α = 0.64, we observed that, as before for N = 4, 6, the
ith and the (i + 2) oscillators synchronize in-phase. When
frequency α is fixed to α = 3.47, however, 2 pairs of anti-
phase synchronized distant neighbors emerge for N = 8
(see Fig. 11), and 5-phase synchronization emerges for
N = 10 (see Fig. 12).

From these results, we infer that N/2 pairs of anti-phase
synchronized oscillators could be observed if half of the
total number of coupled oscillator is even. If the number
of pairs N/2 is an odd number, we, however, expect N/2-
phase synchronization to occur (at least for a not too high
number N of oscillators).

4. Synchronization phenomena when two out of three
oscillators are detuned

The conceptual circuit model corresponding to this sit-
uation is shown in Fig. 13. Figure 14 shows the simula-
tion results if α is set to α = 0.64. In this case, we ob-
serve non-synchronization between oscillator 1 and oscil-
lator 4, although they have the same standard oscillation
frequency. Instead, neighboring oscillators that have the
changing frequencies (2nd-3rd, and 5th-6th oscillators) are
synchronized anti-phase, as is shown in Fig. 14. At vari-
ance with the results presented in the previous section, the
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Figure 11: 2 pair anti-phase synchronization.
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Figure 12: 5-phase synchronization.

oscillators with ω = 1 can now oscillate even at the lower
value α = 0.64, since seemingly they can benefit from the
neighbor that is in the same situation. Together, they can
make it.
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Figure 13: Conceptual circuit model (N=6).

5. Conclusions

In this study, we have investigated synchronization phe-
nomena of distant van der Pol oscillators on a ring topol-
ogy, where we cycle through the topology, detuning oscil-
lators in a regular fashion. Using computer simulations, we
have confirmed that the distant oscillators can synchronize
in-phase, anti-phase, and N/2-phase, in dependence of the
oscillation frequency of the adjacent oscillators.
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Figure 14: Anti-phase synchronization and non-
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