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Abstract—Given a time series of a physical sys-
tem and some model of it, the quality of forecasts rely
on a satisfactory model and state estimation. Small
alterations in the initial state can result in large fore-
cast errors, even when the model is perfect. We re-
port on a promising new tool for state estimation, the
shadowing filters. We compare its performance with
the classical extended Kalman filter and demonstrate
that it is superior. To ensure successful implementa-
tion of a shadowing filter in an arbitrary model we
advise using several tests. These tests cover many im-
portant aspects of a real-world applications, such as:
data requirements, identification of errors, and the cost
performance of different update routines for sequential
state estimation. This talk reports on the superior per-
formance of shadowing filters and provides a “how to”
for implementing them.

1. Introduction

Forecasting the future behaviour of a system is
of interest in engineering, physics, meteorology, geo-
physics and other sciences. Formally forecasting can
be divided into four tasks: (i) devising an appropri-
ate model of the system; (ii) making appropriate ob-
servations; (iii) assimilation of the observations into
the model to obtain state estimates; (iv) evolving the
model states to obtain forecasts.

Task (i) of devising an appropriate model is non-
trivial. Often forecasters approach tasks (iii) and (iv)
using statistical techniques that essentially assume one
has a perfect model, that is, the model can exactly
replicate the system dynamics. In practice, of course,
this is a fiction; all models are wrong, but some are
useful. Even if the model were perfect, the forecaster
must still cope with observational errors. Many non-
linear systems display sensitivity to initial conditions,
that is, a small error in obtaining an appropriate state
estimate can result in exponentially growing forecast
errors. In practice, in order to deal with the uncertain-
ties of observations and model error, forecasters often
employ ensemble forecasts. That is, one makes mul-
tiple forecasts using differnt initial states, and some-
times different models.

In this paper we consider only the problem of
task (ii), assimilation of the observations into the
model to obtain state estimates. Many modern ap-
proachs to task (iii) have been developed from the
Kalman filter approach, perhaps looked at from the
Bayesian statistical point of view. These methods ei-
ther use local linearizations or ensembles to deal with
uncertainty in various way. All these various meth-
ods have the common feature that they are sequential

filters, that is, there is current state estimate, or en-
sembles of state estimates, that is sequentially updated
as each new observation arrives.

In this paper we present at new and different ap-
proach that is not a sequential filter. These shadowing
filters are derived from dynamical system view point
and are able to avoid many of the intrinsic failings of
squential filters. For more details see ...

2. Shadowing filters by gradient descent of in-

determinism

Although the shadowing filter can be implemented
in more general imperfect model situations, for the
purposes of this discussion we will consider the perfect
model scenariowith isotropic Gaussian noise.

Consider a discrete time dynamical system on R
d

with a dynamics given by the map yi+1 = g(yi). As-
sume si = yi+ξ is our observation of yi, where ξ are in-
dependent Gaussian random variates with an isotropic
variance σ2. Also assume to have a model f of the sys-
tem that is identical to g and that f is differentiable.

The task of a shadowing filter is to find a sequence
of states X = (x1, . . ., xn) from a given sequence of ob-
servations S = (s1, . . ., sn). X should be a trajectory
of the model f and should shadow S. For X to be a
trajectory requires xi = f(xi) for i = 1, . . ., n−1. The
trajectory will shadow S if the distances ‖si − xi‖ are
not large relative to σ.

Their are a number of way to implement a shadow-
ing filter, we consider the implementation of a shadow-
ing filter by gradient descent of indeterminism (GDI).
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Define for any sequence of X its indeterminism:

I(X) =
1

n − 1

n−1
∑

i=1

‖xi+1 − f(xi)‖
2. (1)

Since X can be considered as a point in R
nd the

indeterminism is a scalar function on this (n × d)–
dimensional space. Almost surely I(S) will be non-
zero. Also I(X) will only be zero if X is a trajec-
tory of f . The gradient descent method takes S as
a starting sequence and follows the steepest decent
of the gradient I(X) down to the minimum where
I(X) = 0. One way to achieve this is to solve in the
limit as τ → ∞ the differential equation: dX/dτ =
−∇I(X(τ)), X(0) = S. A more practical method is
to solve the differential equation by a Euler iteration
until suitable convergence is achieved, which provides
an iterative GDI shadowing filter. Let X0 = S and
Xm = (x1,m, . . ., xn,m) where

xi,m+1 = xi,m −
2∆

n − 1
× ci,m, (2)

ci,m =



















−A (xi,m) (xi+1,m − f (xi,m)) , i = 1

xi,m − f (xi−1,m) 1 < i < n

−A (xi,m) (xi+1,m − f (xi,m)) ,

xi,m − f (xi−1,m) , i = n.

Here A(x) denotes the adjoint of f (transpose of the
Jacobian matrix) evaluated at x, and ∆ is an arbitrary
step size. Later on we outline a method to find suitable
values for the step size ∆, but typically the choice
2∆

n−1
= 0.1 will lead to a convergence of the iterative

GDI shadowing filter.
Details on the properties of such GDI shadowing

filters are given elsewhere [5] Here we just want to
mention that the GDI method always converges to a
shadowing trajectory of the model and I(X) converges
monotonically to zero. Furthermore, given a long
observation sequence with sufficiently small bounded
measurement noise of a hyperbolic system it can be
shown that for perfect models the GDI shadowing fil-
ter converges to the true trajectory.

In practice we will iterate eq. (2) until Xm has con-
verged sufficiently. The remaining magnitude Im is
one quantity that measures the quality of the esti-
mated states. In addition we define below three other
quantities that measure the quality: The magnitude
of mismatch In,m, the root mean square error Em and
the last point error En,m:

In,m = ‖xn,m − f(xn−1,m)‖ (3)

Em =

√

√

√

√

1

n

n
∑

i=1

‖xi,m − yi‖
2 (4)

En,m = ‖xn,m − yn‖ (5)

In practice we will not know yi and therefore are un-
able to evaluate Em and En,m. Nevertheless, they can
be used to assess successful implementation using ar-
tificial data.

We are also interested in comparing the forecast
f t(xn,m) with the future states yn+t. To measure this
forecast quality one can evaluate the separation time.
We define the separation time as the largest lead time
for which the forecast error remains less than a given
threshold:

Tm = max
{

T : ‖yn+t − f t(xm,n)‖ ≤ 2σ, ∀ 0 ≤ t ≤ T
}

(6)
Here we chose the threshold to be 2σ. But the results
we quote are not particular sensitive to this choice.

3. Application of the shadowing filter

Shadowing filters have been tested now for some
while in simple chaotic dynamical models[8], simple
atmospheric models [6] and only recently in an op-
erational weather forecasting model at reduced reso-
lution using real atmospheric observations [4]. In all
these cases shadowing filters have proven to be a use-
ful tool for state estimation. Unlike linear systems,
each nonlinear system has its own peculiar character-
istics. Therefore all these implementations follow dif-
ferent system–specific rules. But we were able to iden-
tify certain tests and experiments that can be used to
find these specific rules in an arbitrary system. The
complete guide with details on time discrete and time
continuous models can be found somewhere else [8].
Here we focus on time discrete models and illustrate
how to find suitable parameter values of the shadowing
filter using the Ikeda map [2]:

ut+1 = 1 + µ (ut cos(θt) − vt sin(θt)) (7)

vt+1 = µ (ut sin(θt) + vt cos(θt))

θt = a − b/
(

1 + u2
t + v2

t

)

.

This two dimensional map shows chaotic dynamics for
a = 0.4, b = 0.6, µ = 0.83.

To demonstrate typical behaviour of the four quan-
tities Im, Em, En,m and In,m we computed their aver-
age values from an ensemble of 10000 observation se-
quences S. Each of the ensemble members consisted of
n = 15 points and we used m ≥ 500, 2∆/(n−1) = 0.1
for σ = 0.05, 0.1, 0.2. The data can be seen in fig. 1.

Note that in fig. 1 all averages values decrease mono-
tonically with m. The noticeably faster rate of de-
crease in the first 10 iterations is associated with a
fast noise–reduction. Thereafter the shadowing filter
makes fine adjustments to states toward obtaining a
trajectory. After m = 100 iterations Im decreased
more than an order of magnitude, In,m about two or-
ders of magnitude, Em decreased by a factor of 1/4 and
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Figure 1: Average values from 10000 time series with
n = 15 and σ = 0.05, 0.1, 0.2 for (a) Im, (b) In,m,
(c) Em, and (d) En,m as a function of the number of
iterative GDI shadowing filter steps m.

En,m decreased by 1/2. From this list and the data in
fig. 1 one may note that Im > In,m and Em < En,m.
This ordering is significant and a feature arising from
the limited information available to the final state of
the sequence. The final state xn,m only has to ad-
just to mismatches on one side, since xn+1 is unknown
(cf. eq. (2)). Since points in the middle have to ad-
just to mismatches on both sides it is typically more
difficult to achieve the minimum. On the other hand
the missing information of the future dynamics leads
to a poorer state estimation and consequently En,m is
higher than the average value Em of the sequence.

With the given estimated states of the ensemble of
observations we evaluated the separation time Tm de-
fined above. It is useful to compare Tm for m > 0
with the initial value T0 arising from the forecasts of
the unfiltered data. Tab. 1 shows various statistics of
Tm.

The statistical indicators shown reveal that the
shadowing filter improves the quality of forecasts sta-
tistically significant. The major improvement takes
place in the first 10 iterations while additional itera-
tions give further improvement. For all noise levels we
observe at m = 500 an increase of the average separa-
tion time of at least 2 times units. In total 60% of the
estimated states do have at least 1 time unit longer
separation time.

So far we demonstrated that our shadowing filter
implementation is able to find state estimates that
improve the forecasting. But given a observation se-
quence with finite length n and some σ the estimated
state is not unique. From one observation sequence we
find one state consistent with the dynamics of the sys-
tem and the measurement noise realisation. For other
noise realisations we will find another state. In fact
there exists a whole set of states which are consistent

Table 1: Various statistics of the separation time Tm,
namely the mean, variance, percentage of instances
where Tm ≥ T0, and the percentage of instances where
Tm > T0. The horizontal blocks correspond to data
with σ = 0.05, 0.1, 0.2.
m 〈Tm〉 var(Tm) %(Tm ≥ T0) %(Tm > T0)
0 5.4 12.6 0 0
10 6.4 15.7 81 48
100 7.4 19.8 81 59
500 7.9 22.2 82 62
0 4.6 11.1 0 0
10 5.6 14.2 82 49
100 6.6 17.9 82 60
500 7.0 20.7 82 62
0 3.8 9.6 0 0
10 4.7 11.6 81 49
100 5.7 16.3 81 59
500 6.0 18.3 81 62

with the dynamics for a given σ value. This set is
called the indistinguishable set [5] and the uncertainty
associated with estimating one state of it is has to be
compared to the uncertainty of other filters.

The nowadays widely used variants of the extended
Kalman filter use a nonlinear forecast model, but lin-
earise the model about the current state to achieve an
update of the error covariance. In fig. 2 we show the in-
distinguishable set and the typical phase space region
in which the state estimates of an extended Kalman
filter are. Both filter lead to estimates that are close
to the true point (u, v) ≈ (0.75, 0.68). Note that the
indistinguishable states are all on the attractor, while
the estimates of the extended Kalman filter can be off
the attractor. This leads to a big difference when fore-
casts are done from these states. In the figure we show
three forward iterations of the map (from (u, v) down,
to the left and then to the right). Since the area of
estimated states of the extended Kalman filter is not
on the attractor the forward iterations lead to a much
higher spread of the area compared to the spread of the
indistinguishable states. In conclusion we have shown,
that shadowing filters do not only improve the quality
of the forecasts but although are superior compared
with extended Kalman filters [3].

4. The Windowing Test

The demonstrated performance of the shadowing fil-
ter depend on the particular choices of ∆, n and m.
The windowing test is a basic procedure that enables
us to find optimal or appropriate values of these pa-
rameters. The description below outlines the window-
ing test for given values of ∆ and m and therefore
results in an optimal window length n. But the test
can be easily modified to estimate the optimal values
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Figure 2: Typical area occupied by the estimated
states using a shadowing filter (symbols) and the ex-
tended Kalman filter for a true state at (u, v) ≈
(0.75, 0.68). The background shows the Ikeda attrac-
tor. In addition three forward mappings of the area
are shown. Note the bigger growth of the area of esti-
mated states from the extended Kalman filter.
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Figure 3: Difference between the estimated trajectory
Xm,N from a long time series (N = 50) and the esti-
mation Xm,p for p ∈ {4, 6, 8, 10, 15, 20, 30}.

of the other parameters.

The essential idea is to apply a shadowing filter on
increasing length windows of a long data sequence and
observe convergence [8]. Note that this test can be
applied even without knowing the true states, which
is typically the case in practice. On the other hand
it can be applied from artificial observations from a
computed model trajectory using suitable assumptions
about the measurement noise.

The basic windowing test is applied as follows.
Given an observation sequence S = (s1, . . ., sN ) ap-
ply the shadowing filter to the length n subsequence
Sn = (sN−n+1, . . . , sN ), for 2 ≤ n ≤ N , to obtain state
sequences Xm,n = (xN−n+1,m,n, . . . , xN,m,n). Now for
increasing n compare corresponding states of Xm,n to
those of Xm,p for 2 ≤ p < n, that is, compare the
distances ‖xN−i,m,n − xN−i,m,p‖, for 1 ≤ i < p and
2 ≤ p < n. possible with numerical model data.

A typical outcome for m = 100, σ = 0.1 and
2∆/(n − 1) = 0.1 is shown in fig. 3. We started

with a observation sequence N = 50 and used p ∈
{4, 6, 8, 10, 15, 20, 30}. Observe the convergence of Xm

for example and note that Xm,15 and Xm,30 are al-
most identical for the last 10 states of the sequence,
hence, to obtain convergence for a 10 point trajectory
segment, n = 15 is sufficient. A typical application
of the windowing test is to use it to optimise n for a
state estimation that can be used as an initial state
for forecasting. Hence we might be only interested in
convergence for the last state of the sequence. From
fig. 3 we conclude that n ≥ 8 for forecasting purposes.

5. Conclusion

We have demonstrated that shadowing filters are
useful to enhance the quality of state estimates. Our
investigation shows that this leads to longer forecast
times. The state estimations from shadowing filters
are always on the attractor and therefore are better
than the ones of the extended Kalman filter. In ad-
dition we introduced the windowing test. This simple
test enabled us to optimise the parameters of the shad-
owing filter. Since the concept of shadowing filters and
the windowing test can be easily applied to all kind of
systems we hope that this guide will stimulate further
applications.

We acknowledge the support from ARC, grant no.
DP 0662841.
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