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Abstract–It may be difficult for traditional chaining 

type Message Authentication Code (MAC) to work 
efficiently in parallel computing environment. In this paper, 
a chaos-based non-chaining MAC for parallel realization is 
proposed, whose structure can ensure the uniform 
sensitivity of MAC value to the message. By means of the 
mechanism of both changeable-parameter and self-
synchronization, the keystream establishes a close relation 
with the algorithm key, the content and the order of each 
message block. The entire message is modulated into the 
chaotic iteration orbit, and the coarse-graining trajectory is 
extracted as the MAC value. Theoretical analysis and 
computer simulation indicate that the proposed algorithm 
can satisfy the performance requirements of MAC. It is a 
good choice for MAC on parallel computing platform. 
 
1. Introduction 

 
Message Authentication Code (MAC) is a basic 

technique for information security [1]. Hash function is a 
special kind of one-way function which can be classified 
into the following two categories: unkeyed hash function, 
whose specification dictates a single input parameter, a 
message; and keyed hash function, whose specification 
dictates two distinct inputs, a message and a secret key. 
The keyed hash function can also be used as Message 
Authentication Code (MAC). Most keyed hash functions 
are designed as the traditional chaining structure, which is 
essentially realized in a sequential mode. The processing of 
the current message block cannot start until the previous 
one has been processed. This limitation restricts their 
applications on the platform supporting parallel processing. 
Besides, the sensitivities of MAC value to the message 
blocks at different positions of the message are uneven. 

Recently, a variety of chaos-based MAC or hash 
functions have been proposed [2]-[4]. However, they still 
inherit the traditional chaining structure. Therefore, they 
inevitably have the above same flaws. 

In this paper, a chaos-based non-chaining MAC for 
parallel realization is proposed, whose structure can ensure 
the uniform sensitivity of MAC to the message. The 
mechanism of both changeable-parameter and self-
synchronization is utilized to achieve the performance 
requirements of MAC. The rest of this paper is arranged as 
follows. Section 2 introduces the algorithm and its 
characteristics in detail. In Section 3, its performance 
analysis is given. Section 4 is the conclusion. 
 
2. The proposed algorithm 
2.1. Algorithm Structure 

 
Let 128N  be the bit-length of hash value without 

loss of generality. First of all, the original message M  is 
padded such that its length is a multiple of 128: let m  be 
the length of the original message M ; the padding bits 

2)0100(   with length n  (such that 
1281,6464128128mod)(  nnm ) are 

appended. The left 64-bit is used to denote the length of 
the original message M . If m  is greater than 264, then 

642modm . After padding, M  is constituted by blocks 
with 128 bits, ),,,( 21 sMMMM  , and each block 
is indicated as N

iiii MMMM 21 . The initial N -bit 
vector 

0H  is set. 
The whole structure of the algorithm can be illustrated 

in Fig. 1 and described in (1). 

 
Fig.1 General model for the non- iterated type MAC 
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where iM  is the ith message block; i  is the order of 
each block; and ( )MAC M  is the final MAC value. The 
whole algorithm consists of two parts: In the first part, the 
process of the ith message block iM , the core task can be 
summarized as: under the control of ),,( iMikey , the 
keystream iK  is generated by compression function F . 

The above keystream iK  ( si ,,,2,1  ) 
corresponding to different message block 

iM ( si ,,,2,1  ) can be generated in a parallel 
mode, respectively. In the second part, based on all the 
generated keystream iK  ( si ,,,2,1  ), the 
MIXING operation are performed on 

sKKKH ,,,, 210  to get the final MAC value. Through 
the analysis on (1), we may notice that the effect of each 
message block iM  on the final MAC value )( MMAC  
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is equivalent. This overcomes the flaw in existing 
algorithms that the sensitivities of MAC value to the 
message blocks at different positions of the message are 
wavy. 
 
2.2. Algorithm Description 
 

Piecewise Linear Chaotic Map （PWLCM）is: 
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where )5.0,0(],1,0[  uxk  are the iteration 
trajectory value and parameter of PWLCM, respectively. 
The initial 0x  and 0u  are set as the algorithm key. 

The ith 128-bit message block iM  

( si ,,,2,1  ) is re-divided into L  units as (3), 
each unit has 8 bits (actually a character). 
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Step 1. The current order “ i ” is normalized as 

]1,0[iz  by computing )1/()1(  siz i , and 

)1,0(2/)( 00  izuuu  is set. Then, 

Lwww ,,, 21   of iM  is pre-mapped into 

Lwrwrwr ,,, 21   in )1,0[  by means of linear 

transform Liwwr ii ,,2,1,256/  . 
Step 2. The iteration process of PWLCM is as follows: 
(a) 1j : Set the initial condition and parameter 

)5.0,0(4/)(, 01100  uuwrPxy , 

respectively, and iterate 8-time 
1PF , then obtain 

8,,2,1},{ ryr ; 
(b) Lj ~2 : Set the initial condition and parameter 

)5.0,0(4/)(, )1(8)1(80   jjjj ywrPyy ,respective

ly, and iterate 8-time 
jPF , then obtain 

8)1(8,,2)1(8,1)1(8},{  jjjry r  ; 
(c) 1 Lj : Set the initial condition and parameter 

)5.0,0(4/)(, 880   LLjL ywrPyy , respectively, 

and iterate 8-time 
jPF , then obtain 

88,,28,18},{  LLLryr  ; 
(d) LLj  2~2 : Set the initial condition and 

parameter )5.0,0(4/)(, )1(8)12()1(80   jjLjj ywrPyy , 

respectively, and iterate 8-time 
jPF , then obtain 

8)1(8,,2)1(8,1)1(8},{  jjjry r 
. 

Step 3. Obtain Nryy r ,,2,1},{  from  
Nry r 2,,2,1},{  by setting 

NjNjyjyy ,,2,1),()(  . 
Step 4. Utilize the same method in [5] to extract all the 

2nd bits of Nryyr ,,2,1},{   and form a binary 
sequence, which is composed of independent and 
identically distributed (i.i.d.) binary random variables. 

Let x  represent Nryyr ,,2,1,  , 
respectively. Denote the a floating point number x  as 

}1,0{)(],1,0[,)()()(.0 21  xbxxbxbxbx ii         (4) 

The ith-bit  )(xbi  can be expressed as 

)()1()( )2/(
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where )(xt  is a threshold function which is defined 
as 
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Set 2i , a binary sequence N
rr

r yybB 122 )}({   
(where r  is the length of the sequence and ryy  is the rth 
floating point value) can be obtained. This N -bit 
sequence is iK , the keystream corresponding to ith 

message block iM , generated by compression function  
F . 

The keystream iK  ( si ,,,2,1  ) 
corresponding to different message block 

iM ( si ,,,2,1  ) can be generated in a parallel 
mode, respectively, and then XOR operations are 
performed all together to obtain the final )(MMAC . The 
most important point is that the generation of the 
keystream iK  must be under the control of the 

corresponding ),,( iMkey i , namely, iK  must have a 
close relation with the algorithm key, the content and the 
order of current message block iM , which can guarantee 
the security. 

During the process of each message block 

iM ( si ,,,2,1  ), cipher block chaining mode 
(CBC) [1] is introduced to ensure that the parameter P  in 
each iteration is dynamically decided by the last-time 
iteration value and the corresponding message bit in 
different positions. On the one hand, perturbation is 
introduced in a simple way to avoid the dynamical 
degradation of chaos; on the other hand, self-synchronizing 
stream is realized [1], which ensures that the generated 
keystream iK  is closely related to the algorithm key, the 
content and the order “ i ”of each message block 
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iM ( si ,,,2,1  ). Different message block 
iM  

leads to different keystream iK ; and even the same 
message block 

iM , when the order “ i ” changes, the 

corresponding keystream iK  will be also totally different. 
 
3. Performance analysis 
3.1. Distribution of MAC Value 
 

Uniform distribution is one of the most important 
requirements of MAC value, which is directly related to 
security. Simulation experiment has been done on the 
following message-“As a ubiquitous phenomenon in 
nature, chaos is a kind of deterministic random-like 
process generated by nonlinear dynamic systems. The 
properties of chaotic cryptography includes: sensitivity to 
tiny changes in initial conditions and parameters, 
random-like behavior, unstable periodic orbits with long 
periods and desired diffusion and confusion properties, 
etc. Furthermore, benefiting from the deterministic 
property, the chaotic system is easy to be simulated on the 
computer. Unique merits of chaos bring much promise of 
application in the information security field.” 

2-dimensional graphs are used to demonstrate the 
differences between the original message and the final 
MAC value. In Fig.2, the ASCII codes of the original 
message are localized within a small area; while in Fig.3, 
the hexadecimal MAC value spreads around very 
uniformly. No information (including the statistic 
information) of the original message can be left after the 
diffusion and confusion. 

 

Fig.2  Distribution of the original message in ASCII 

 

Fig.3 Distribution of the MAC value in hexadecimal format 

 
3.2. Sensitivity of MAC Value to the Message and Key 
 

In order to evaluate the sensitivity of MAC value to the 
message and secret key, MAC simulation experiments 
have been done under the following different 8 conditions: 

C1: The original message is the same as the one in 
Section 3.1; 

C2: Changes the first character A in the original 
message into B; 

C3: Changes the word unstable in the original message 
into anstable; 

C4: Changes the full stop at the end of the original 
message into comma; 

C5: Adds a blank space to the end of the original 
message; 

C6: Changes the secret key 0x  from 0.232323 to 
0.2323230000000001; 

C7: Changes the secret key 0u  from 0.454445 to 
0.454445000000001; 

C8: Exchanges the 1st message block 1M -“As a 
ubiquitous ” with the 2nd message block 2M -
“phenomenon in na”. 

The corresponding MAC values in hexadecimal format 
are gotten as follows: 

C1: B861DC813886168227D2CEF568762393 
C2: CF5BEEA2754AD50F9F86C66AD1F758B2 
C3: B2777A4C86BA12A6217018D50983284A 
C4: 58839676B70448E52B34A38E472E1B23 
C5: BD0C93DCD8C87A3D55B896065CB67B7E 
C6: 9854FDF54E412544FBA73676EADBD580 
C7: 5C3CCDFE32CBA412BA21DD1ECE3DA7A5 
C8：F504F69E60E1CD399945A1D80ED1816F.  
The simulation result indicates that the sensitivity 

property of the proposed algorithm is so perfect that any 
least difference of the message or key will cause huge 
changes in the final MAC value. The initial condition 0x  

and initial parameters 0u  of PWLCM are set as the 
algorithm secret key. The key space is large enough to 
resist all kinds of brute-force attacks. Moreover, for the 
sensitivity to tiny changes in initial conditions and 
parameters of chaotic map, it is impossible to deduce 

00 ,ux  from the iteration value. 
 
3.3. Statistic Analysis of Diffusion and Confusion 
 

For the MAC value in binary format, each bit is only 1 
or 0. So the ideal effect should be that any tiny changes in 
original conditions lead to the 50% changing probability 
for each bit of MAC value. We have performed the 
following diffusion and confusion test: A paragraph of 
message is randomly chosen and MAC value is generated; 
then a bit in the message is randomly selected and toggled 
and a new MAC value is generated. Two MAC values are 
compared and the number of changed bit is counted as iB . 
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This kind of test is performed N -time. Four statistics are 
defined: 
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Through the tests with N =256, 512, 1024, 2048, 
respectively, the corresponding data are listed in Table I. 
The mean changed bit number B  and the mean changed 
probability P are both very close to the ideal value 64 bit 
and 50%. While B  and P  are very little, which 
indicates the capability for diffusion and confusion is 
stable. 

Table 1 Statistics of  the  number of changed bit Bi 
 N=256 N=512 N=1024 N=2048 Mean 
B  63.9023 63.7715 64.0742 63.9673 63.9288 

P /% 49.92 49.82 50.06 49.97 49.9425 
B  5.7205 5.5125 5.6750 5.7637 5.6679 
P /% 4.47 4.31 4.43 4.50 4.4275 

 
3.4. Analysis of Collision Resistance 

 
The following test has been performed [2]-[4]: first, the 

MAC value for a paragraph of message randomly chosen 
is generated and stored in ASCII format. Then a bit in the 
message is selected randomly and toggled. A new MAC 
value is then generated and stored in ASCII format. Two 
MAC values are compared, and the number of ASCII 
character with the same value at the same location in the 
MAC value, namely the number of hits, is counted. 
Moreover, the absolute difference of two MAC values is 

calculated using the formula: |)()(|
1

i

N

i
i etetd 



, 

where ie  and '
ie  be the ith ASCII character of the original 

and the new MAC value, respectively, and the function 
)(t  converts the entries to their equivalent decimal 

values. This kind of test has been performed 2048 times, 
with the key 454445.0,232332.0 00  ux . The 
maximum, mean, minimum values of d  and 
Mean/character are listed in Table II. The distribution of 
the number of hits is given in Fig.4. It is noticed that the 
maximum number of equal character is only 2 and the 
collision is very low. 
Table 2 Absolute differences of two hash values  
Maximum Minimum Mean Mean/character 
2224 653 1466.3 91.644 

 

 

Fig.4 Distribution of the number of ASCII characters with the same 
value at the same location in the MAC value 

 
3.5. Analysis of Efficiency 
 

Since the proposed algorithm can support parallel 
mode, therefore its efficiency is predominant compared to 
other hash algorithms in sequential mode. 
 
4. Conclusion 
 

In this paper, a chaos-based non-chaining MAC for 
parallel realization, whose structure can overcomes the 
existing flaw that the sensitivities of MAC value to the 
message blocks at different positions of the message are 
wavy, is proposed. The proposed algorithm fulfils the 
performance requirements of MAC, which is with high 
potential to be adopted for e-Business. 
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