

A Non-chaining Message Authentication Code Based on Chaos

Di Xiao, Qingqing Fu, and Tao Xiang

College of Computer Science, Chongqing University, Chongqing 400044, China
Email: xiaodi_cqu@hotmail.com, 806745280@qq.com, txiang@cqu.edu.cn

Abstract–It may be difficult for traditional chaining

type Message Authentication Code (MAC) to work
efficiently in parallel computing environment. In this paper,
a chaos-based non-chaining MAC for parallel realization is
proposed, whose structure can ensure the uniform
sensitivity of MAC value to the message. By means of the
mechanism of both changeable-parameter and self-
synchronization, the keystream establishes a close relation
with the algorithm key, the content and the order of each
message block. The entire message is modulated into the
chaotic iteration orbit, and the coarse-graining trajectory is
extracted as the MAC value. Theoretical analysis and
computer simulation indicate that the proposed algorithm
can satisfy the performance requirements of MAC. It is a
good choice for MAC on parallel computing platform.

1. Introduction

Message Authentication Code (MAC) is a basic

technique for information security [1]. Hash function is a
special kind of one-way function which can be classified
into the following two categories: unkeyed hash function,
whose specification dictates a single input parameter, a
message; and keyed hash function, whose specification
dictates two distinct inputs, a message and a secret key.
The keyed hash function can also be used as Message
Authentication Code (MAC). Most keyed hash functions
are designed as the traditional chaining structure, which is
essentially realized in a sequential mode. The processing of
the current message block cannot start until the previous
one has been processed. This limitation restricts their
applications on the platform supporting parallel processing.
Besides, the sensitivities of MAC value to the message
blocks at different positions of the message are uneven.

Recently, a variety of chaos-based MAC or hash
functions have been proposed [2]-[4]. However, they still
inherit the traditional chaining structure. Therefore, they
inevitably have the above same flaws.

In this paper, a chaos-based non-chaining MAC for
parallel realization is proposed, whose structure can ensure
the uniform sensitivity of MAC to the message. The
mechanism of both changeable-parameter and self-
synchronization is utilized to achieve the performance
requirements of MAC. The rest of this paper is arranged as
follows. Section 2 introduces the algorithm and its
characteristics in detail. In Section 3, its performance
analysis is given. Section 4 is the conclusion.

2. The proposed algorithm
2.1. Algorithm Structure

Let 128N be the bit-length of hash value without

loss of generality. First of all, the original message M is
padded such that its length is a multiple of 128: let m be
the length of the original message M ; the padding bits

2)0100( with length n (such that
1281,6464128128mod)( nnm) are

appended. The left 64-bit is used to denote the length of
the original message M . If m is greater than 264, then

642modm . After padding, M is constituted by blocks
with 128 bits,),,,(21 sMMMM  , and each block
is indicated as N

iiii MMMM 21 . The initial N -bit
vector

0H is set.
The whole structure of the algorithm can be illustrated

in Fig. 1 and described in (1).

Fig.1 General model for the non- iterated type MAC









),,,,()(
,,2,1),,,(

210 ss

ii

KKKHMIXINGHMMAC
siMikeyFK


 (1)

where iM is the ith message block; i is the order of
each block; and ()MAC M is the final MAC value. The
whole algorithm consists of two parts: In the first part, the
process of the ith message block iM , the core task can be
summarized as: under the control of),,(iMikey , the
keystream iK is generated by compression function F .

The above keystream iK (si ,,,2,1 )
corresponding to different message block

iM (si ,,,2,1 ) can be generated in a parallel
mode, respectively. In the second part, based on all the
generated keystream iK (si ,,,2,1 ), the
MIXING operation are performed on

sKKKH ,,,, 210  to get the final MAC value. Through
the analysis on (1), we may notice that the effect of each
message block iM on the final MAC value)(MMAC

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 550 -

is equivalent. This overcomes the flaw in existing
algorithms that the sensitivities of MAC value to the
message blocks at different positions of the message are
wavy.

2.2. Algorithm Description

Piecewise Linear Chaotic Map （PWLCM）is:




















11,/)1(
15.0),5.0/()1(
5.0),5.0/()(

0,/

)()1(

kk

kk

kk

kk

kuk

xuux
uxuux

xuuux
uxux

xFx (2)

where)5.0,0(],1,0[ uxk are the iteration
trajectory value and parameter of PWLCM, respectively.
The initial 0x and 0u are set as the algorithm key.

The ith 128-bit message block iM

(si ,,,2,1 ) is re-divided into L units as (3),
each unit has 8 bits (actually a character).

         
Lw

N
i

N
i

N
i

w

iii

w

iiii MMMMMMMMMM 6716109821

10

,, 

 (3)
Step 1. The current order “ i ” is normalized as

]1,0[iz by computing)1/()1( siz i , and

)1,0(2/)(00  izuuu is set. Then,

Lwww ,,, 21  of iM is pre-mapped into

Lwrwrwr ,,, 21  in)1,0[by means of linear

transform Liwwr ii ,,2,1,256/  .
Step 2. The iteration process of PWLCM is as follows:
(a) 1j : Set the initial condition and parameter

)5.0,0(4/)(, 01100  uuwrPxy ,

respectively, and iterate 8-time
1PF , then obtain

8,,2,1},{ ryr ;
(b) Lj ~2 : Set the initial condition and parameter

)5.0,0(4/)(,)1(8)1(80   jjjj ywrPyy ,respective

ly, and iterate 8-time
jPF , then obtain

8)1(8,,2)1(8,1)1(8},{  jjjry r  ;
(c) 1 Lj : Set the initial condition and parameter

)5.0,0(4/)(, 880   LLjL ywrPyy , respectively,

and iterate 8-time
jPF , then obtain

88,,28,18},{  LLLryr  ;
(d) LLj  2~2 : Set the initial condition and

parameter)5.0,0(4/)(,)1(8)12()1(80   jjLjj ywrPyy ,

respectively, and iterate 8-time
jPF , then obtain

8)1(8,,2)1(8,1)1(8},{  jjjry r 
.

Step 3. Obtain Nryy r ,,2,1},{  from
Nry r 2,,2,1},{  by setting

NjNjyjyy ,,2,1),()( .
Step 4. Utilize the same method in [5] to extract all the

2nd bits of Nryyr ,,2,1},{  and form a binary
sequence, which is composed of independent and
identically distributed (i.i.d.) binary random variables.

Let x represent Nryyr ,,2,1,  ,
respectively. Denote the a floating point number x as

}1,0{)(],1,0[,)()()(.0 21  xbxxbxbxbx ii  (4)

The ith-bit)(xbi can be expressed as

)()1()()2/(

12

1

1 xxb i

i

q
q

q
i 





 (5)

where)(xt is a threshold function which is defined
as









tx
tx

xt 1
0

)((6)

Set 2i , a binary sequence N
rr

r yybB 122)}({ 
(where r is the length of the sequence and ryy is the rth
floating point value) can be obtained. This N -bit
sequence is iK , the keystream corresponding to ith

message block iM , generated by compression function
F .

The keystream iK (si ,,,2,1 )
corresponding to different message block

iM (si ,,,2,1 ) can be generated in a parallel
mode, respectively, and then XOR operations are
performed all together to obtain the final)(MMAC . The
most important point is that the generation of the
keystream iK must be under the control of the

corresponding),,(iMkey i , namely, iK must have a
close relation with the algorithm key, the content and the
order of current message block iM , which can guarantee
the security.

During the process of each message block

iM (si ,,,2,1 ), cipher block chaining mode
(CBC) [1] is introduced to ensure that the parameter P in
each iteration is dynamically decided by the last-time
iteration value and the corresponding message bit in
different positions. On the one hand, perturbation is
introduced in a simple way to avoid the dynamical
degradation of chaos; on the other hand, self-synchronizing
stream is realized [1], which ensures that the generated
keystream iK is closely related to the algorithm key, the
content and the order “ i ”of each message block

- 551 -

iM (si ,,,2,1 ). Different message block
iM

leads to different keystream iK ; and even the same
message block

iM , when the order “ i ” changes, the

corresponding keystream iK will be also totally different.

3. Performance analysis
3.1. Distribution of MAC Value

Uniform distribution is one of the most important
requirements of MAC value, which is directly related to
security. Simulation experiment has been done on the
following message-“As a ubiquitous phenomenon in
nature, chaos is a kind of deterministic random-like
process generated by nonlinear dynamic systems. The
properties of chaotic cryptography includes: sensitivity to
tiny changes in initial conditions and parameters,
random-like behavior, unstable periodic orbits with long
periods and desired diffusion and confusion properties,
etc. Furthermore, benefiting from the deterministic
property, the chaotic system is easy to be simulated on the
computer. Unique merits of chaos bring much promise of
application in the information security field.”

2-dimensional graphs are used to demonstrate the
differences between the original message and the final
MAC value. In Fig.2, the ASCII codes of the original
message are localized within a small area; while in Fig.3,
the hexadecimal MAC value spreads around very
uniformly. No information (including the statistic
information) of the original message can be left after the
diffusion and confusion.

Fig.2 Distribution of the original message in ASCII

Fig.3 Distribution of the MAC value in hexadecimal format

3.2. Sensitivity of MAC Value to the Message and Key

In order to evaluate the sensitivity of MAC value to the
message and secret key, MAC simulation experiments
have been done under the following different 8 conditions:

C1: The original message is the same as the one in
Section 3.1;

C2: Changes the first character A in the original
message into B;

C3: Changes the word unstable in the original message
into anstable;

C4: Changes the full stop at the end of the original
message into comma;

C5: Adds a blank space to the end of the original
message;

C6: Changes the secret key 0x from 0.232323 to
0.2323230000000001;

C7: Changes the secret key 0u from 0.454445 to
0.454445000000001;

C8: Exchanges the 1st message block 1M -“As a
ubiquitous ” with the 2nd message block 2M -
“phenomenon in na”.

The corresponding MAC values in hexadecimal format
are gotten as follows:

C1: B861DC813886168227D2CEF568762393
C2: CF5BEEA2754AD50F9F86C66AD1F758B2
C3: B2777A4C86BA12A6217018D50983284A
C4: 58839676B70448E52B34A38E472E1B23
C5: BD0C93DCD8C87A3D55B896065CB67B7E
C6: 9854FDF54E412544FBA73676EADBD580
C7: 5C3CCDFE32CBA412BA21DD1ECE3DA7A5
C8：F504F69E60E1CD399945A1D80ED1816F.
The simulation result indicates that the sensitivity

property of the proposed algorithm is so perfect that any
least difference of the message or key will cause huge
changes in the final MAC value. The initial condition 0x

and initial parameters 0u of PWLCM are set as the
algorithm secret key. The key space is large enough to
resist all kinds of brute-force attacks. Moreover, for the
sensitivity to tiny changes in initial conditions and
parameters of chaotic map, it is impossible to deduce

00 ,ux from the iteration value.

3.3. Statistic Analysis of Diffusion and Confusion

For the MAC value in binary format, each bit is only 1
or 0. So the ideal effect should be that any tiny changes in
original conditions lead to the 50% changing probability
for each bit of MAC value. We have performed the
following diffusion and confusion test: A paragraph of
message is randomly chosen and MAC value is generated;
then a bit in the message is randomly selected and toggled
and a new MAC value is generated. Two MAC values are
compared and the number of changed bit is counted as iB .

- 552 -

This kind of test is performed N -time. Four statistics are
defined:

Mean changed bit number 



N

i
iB

N
B

1

1

Mean changed probability %100)128/( BP








N

i
i BB

N
B

1

2)(
1

1

%100)128/(
1

1
1

2 


 


N

i
i PB

N
P .

Through the tests with N =256, 512, 1024, 2048,
respectively, the corresponding data are listed in Table I.
The mean changed bit number B and the mean changed
probability P are both very close to the ideal value 64 bit
and 50%. While B and P are very little, which
indicates the capability for diffusion and confusion is
stable.

Table 1 Statistics of the number of changed bit Bi
 N=256 N=512 N=1024 N=2048 Mean
B 63.9023 63.7715 64.0742 63.9673 63.9288

P /% 49.92 49.82 50.06 49.97 49.9425
B 5.7205 5.5125 5.6750 5.7637 5.6679
P /% 4.47 4.31 4.43 4.50 4.4275

3.4. Analysis of Collision Resistance

The following test has been performed [2]-[4]: first, the

MAC value for a paragraph of message randomly chosen
is generated and stored in ASCII format. Then a bit in the
message is selected randomly and toggled. A new MAC
value is then generated and stored in ASCII format. Two
MAC values are compared, and the number of ASCII
character with the same value at the same location in the
MAC value, namely the number of hits, is counted.
Moreover, the absolute difference of two MAC values is

calculated using the formula: |)()(|
1

i

N

i
i etetd 



,

where ie and '
ie be the ith ASCII character of the original

and the new MAC value, respectively, and the function
)(t converts the entries to their equivalent decimal

values. This kind of test has been performed 2048 times,
with the key 454445.0,232332.0 00  ux . The
maximum, mean, minimum values of d and
Mean/character are listed in Table II. The distribution of
the number of hits is given in Fig.4. It is noticed that the
maximum number of equal character is only 2 and the
collision is very low.
Table 2 Absolute differences of two hash values
Maximum Minimum Mean Mean/character
2224 653 1466.3 91.644

Fig.4 Distribution of the number of ASCII characters with the same
value at the same location in the MAC value

3.5. Analysis of Efficiency

Since the proposed algorithm can support parallel
mode, therefore its efficiency is predominant compared to
other hash algorithms in sequential mode.

4. Conclusion

In this paper, a chaos-based non-chaining MAC for
parallel realization, whose structure can overcomes the
existing flaw that the sensitivities of MAC value to the
message blocks at different positions of the message are
wavy, is proposed. The proposed algorithm fulfils the
performance requirements of MAC, which is with high
potential to be adopted for e-Business.

Acknowledgments

The work described in this paper was funded by the
National Natural Science Foundation of China (Grant Nos.
61173178, 61272043, 61472464) and the Fundamental
Research Funds for the Central Universities (Grant Nos.
106112013CDJZR180005, 106112014CDJZR185501).

References

[1] B. Schneier, Applied Cryptography, Wiley, New York,
1996.
[2] D. Xiao, X.F. Liao, and K.W. Wong, “Improving the
security of a dynamic look-up table based chaotic
cryptosystem”, IEEE Trans. Circuits Syst. II, vol. 53, no. 6,
Jun. 2006, pp. 502-506.
[3]G. Arumugam, V. Lakshmi Praba, S. Radhakrishnan,
“Study of chaos functions for their suitability in
generating Message Authentication Codes”, Appl. Soft
Comput. vol. 7, no.3, Jun. 2007, pp. 1064-1071.
[4] A. Kanso, M. Ghebleh, “A fast and efficient chaos-
based keyed hash function”, Commun. Nonlinear Sci.
Numer. Simul., vol. 18, no.1, Jan. 2013, pp.109–123.
[5] T. Kohda, A. Tsuneda, “Statistics of chaotic binary
sequences”, IEEE Trans. Inform. Theory, vol. 43, no. 1,
Jan. 1997, pp. 104-112.

- 553 -

	Navigation Page
	Session at a glance

