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Abstract– In this paper, some properties of the chaotic 

propagating pulse wave in a ring of six coupled bistable 

oscillators are investigated. When coupling factor α 

becomes large beyond a certain critical point, the standing 

pulse wave converts to a propagating pulse wave. Further, 

as α is increased, the propagating pulse wave behaves 

chaotically. We find some interesting properties of chaotic 

propagating pulse wave such as random change of 

propagation direction, stepwise change of pulse position 

wrt time, and probability density of the time-length and 

distance, etc. 

 

1.  Introduction 

 

The pulse wave propagation phenomena in coupled 

oscillator systems are very popular in recent years [1]. We 

have investigated the pulse wave in a ring of coupled 

bistable oscillator systems in [2], [3]. Generally speaking, 

for small coupling factor, there is a standing pulse wave 

which stays in one place. When the coupling factor 

becomes large beyond a certain critical value, the standing 

pulse wave converts to the propagating pulse wave. 

Further, for larger coupling factor, the propagating pulse 

wave becomes chaotic. It changes its propagation 

direction at random. In this paper, we investigate the 

properties of the chaotic propagating pulse wave such as 

probability density of the time-length and distance, etc. 

 

2. Chaotic propagating pulse wave in a ring of six 

coupled bistable oscillators 
 

In our previous paper, we investigate transition 

mechanism from a standing pulse wave to a propagating 

pulse wave in terms of coupling factor α in a ring of six 

coupled bistable oscillators [2][3]. 

The equation we investigate is as follows: 
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, where N is number of oscillators. The xi denotes the 

normalized output voltage of the i-th oscillator, yi denotes 

its derivative. The parameter ε (> 0) shows the degree of 

nonlinearity. The parameter α (0 ≦ α < 1) is a coupling 

factor; namely α = 1 means maximum coupling, and α = 0 

means no coupling. The parameter β controls amplitude of 

oscillation. Each isolated oscillator has two steady- states, 

namely, no oscillation and periodic oscillation depending 

on the initial condition. In this paper, parameters β and ε 

are fixed as β = 3.18 and ε = 0.36. 

It has been already clarified that the transition from the 

standing pulse wave to the propagating pulse wave is a 

bifurcation from the periodic solution to the almost 

periodic solution, and that the bifurcation originates in a 

complex combination of the pitchfork and the heteroclinic 

bifurcations [3]. When coupling factor α is increased, it is 

noted that the propagation speed increases and beyond a 

certain critical value of α, the propagating wave become 

chaotic. The variation of Lyapunov exponents is presented 

in term of α in Figure 1. 

 

 
Fig. 1 Transition of 12 Lyapunov exponents of a ring of six coupled 

bistable oscillators in terms of α for β = 3.18 and ε = 0.36. red: LE1, 

green: LE2, blue: LE3. In region B, LE1 and LE2 overap. 
 

Namely, in region A(0.08 ≦ α < 0.0905), where the 

standing pulse wave exists, LE1 = 0 and LE2~LE12 < 0. 

Therefore, this is a periodic solution. In region B (0.0905 

≦ α < 0.1118) where the non-chaotic propagating pulse 

wave exists, LE1 = LE2 = 0 and LE3~LE12 < 0. 

Therefore, this is an almost periodic solution. In region C 

(0.1118 ≦ α < 0.1162) where the chaotically propagating 

pulse wave exists, LE1 > 0, LE2 = 0 and LE3~LE12 < 0. 

Therefore, this is a chaotic attractor. In region D (0.1162 

≦ α) there is no oscillation. 
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Figures 2 demonstrates 3D representation of typical (a) 

standing pulse wave, (b) non-chaotic propagating pulse 

wave, and (c) chaotic propagating pulse wave. Note that 

the standing pulse wave stays in one position, propagating 

pulse wave propagates in one direction; namely 

propagating direction is unchanged, once it is determined. 

In contrast, the chaotic propagating pulse wave changes 

its direction occasionally in random manner. 

 

 
(a)  

 
(b) 

 
(c) 

 

Fig. 2 Three typical waves: (a) standing pulse wave for α = 0.08, (b) 

non-chaotic propagating pulse wave for α = 0.10 and (c) chaotic 

propagating pulse wave for α = 0.115. The fixed parameters are ε = 0.36 

and β = 3.18. The absolute magnitude of    
    

  (i : number of 

oscillators) is shown in colors. 

 
Figures 3 (a) and (b) present the propagating distance 

measured by oscillator number in terms of time for (a) α 

chosen in non-chaotic regime, and for (b) three values of α 

all chosen in chaotic regime. It is recognized that the 

propagating direction do not change in non-chaotic regime, 

but it suddenly changes in random manner in chaotic 

regime. It seems that the absolute value of propagation 

speed (= magnitude of the slope) in chaotic regime is 

constant for fixed values of α.  

Figure 4 shows absolute value of propagation speed in 

terms of α. It is recognized that the propagation speed in 

chaotic regime is a smooth extension of the non-chaotic 

regime. That is, the (absolute value of) propagation speed 

increases with the increase of α. 
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(a) 

 
(b) 

Fig. 3 Propagating distance measured by oscillator number. (a) Non-

chaotic propagating pulse wave for α = 0.100. (b) Chaotic propagating 

pulse wave for α = 0.114 (blue), 0.115 (red) and 0.116 (green). The fixed 
parameters are ε = 0.36 and β = 3.18.  Small figure is (a) presents a 

magnified diagram.  Same structure can be seen in (b). 

 

 
Fig. 4 Propagating speed in terms of α region A: standing pulse wave, 

region B: non-chaotic propagating pulse wave, region C: chaotic 

propagating pulse wave. The fixed parameters are ε = 0.36 and β = 3.18. 

 

3.  Statistical characteristics 

 

Figures 5 (a), (b) and (c) demonstrate the probability 

density of the one-section time length for three values of α. 

This probability density is calculated by using the kernel 

density estimation method with band width equals to 1 

and with Gaussian kernel [4]. Here, one-section time 

length denotes the time in which a chaotic pulse 

propagates to one direction. The probability of occurrence 

of small time length and that of large time length are both 

large, while, that of medium time length is small. 

Moreover, the maximum time length for small α (the time 

corresponding to peak a), is larger than that for large α 

(the time corresponding to peak a’ and a’’).  This means 

that the probability of propagating direction change is 

small for smaller values of α compared to larger values of 

α.  One of the characteristic features of the probability 

density in Fig.5 is its tooth-like structure. The time    in 

Fig.3 (a) is equal to the time between two peaks in Fig.5.  

This is the time for a pulse to move one oscillator unit. 

Namely, a pulse stays in one oscillator for a long time and 

quickly moves to the next one.  

Figures 6 (a), (b) and (c) denote the probability density 

of one-section length.  Same as Fig.5 the probability 

density is large in both sides and it is small in the middle. 

In particular, comparing three peaks b, b’ and b’’, it is 

recognized that for smaller α, the distance of one-section  

is longer. 

 

4.  Conclusions 

 

We investigate properties of chaotic propagating pulse 

wave in a ring of six coupled oscillator system. Namely, 

we calculate propagating distance in term of time, 

propagating speed in terms of coupling strength, and 

probability density of the pulse direction change 

phenomenon. In the future, we investigate the same 

characteristics for larger number of oscillator cases. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5 Probability density of one-section time length of a chaotic 

propagating pulse in different values of α: (a) α = 0.113, (b) α = 0.114, 
(c) α = 0.116. The total time for (a), (b) and (c) is 800000 seconds. The 

fixed parameters are ε = 0.36 and β = 3.18. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 6 Probability density of the distance of one section of a chaotic 

propagating pulse in different values of α:. (a) α = 0.113, (b) α = 0.114, 
(c) α = 0.116. The total time for (a), (b) and (c) is 800000 seconds. The 

fixed parameters are ε = 0.36 and β = 3.18. 
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