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Abstract—Using global case data for the period from
25 November 2003 to 10 March 2007, we construct a time
series of the number of outbreaks for the spread of avian
influenza among domestic and wild birds. The correlations
of these spread patterns are reflected in a power-law scal-
ing of this property. The temporal dynamic of the spread
of influenza is further investigated with a standard non-
linear time series analysis tool. We suggest that the dy-
namic underlying the spread of avian influenza is not low-
dimensional and hence, characterized by short term unpre-
dictability.

1. Introduction

In the current context of global infectious disease risks,
a better understanding of the dynamics of major epidemics
is urgently needed. Mathematical models of disease trans-
mission can provide a framework for improving our un-
derstanding of the complex dynamics of infectious disease
epidemics [1]. This is crucial in attempts to design ef-
fective intervention and control strategies. Since the early
1900s, sophisticated mathematical and statistical methods
have been used [2]. Nevertheless, the lack of appropriate
data-sets has impeded the validation of mechanistic math-
ematical models. More recently, time series methods have
appeared as an interesting alternative and have been used
to explore the dynamics of numerous epidemics [3].

Here, we consider tools from the field of nonlinear time
series analysis to investigate the time predictability of the
spread of avian influenza among domestic and wild birds.
Recently, the global spatiotemporal distribution of avian in-
fluenza cases have been examined by considering the com-
plex network topology of the outbreaks [4]. In contrast to
standard mathematical models of disease transmission, it
was found that the current avian influenza outbreak is con-
sistent with a network transmission of disease which does
not exhibit a positive threshold. Hence, the disease will
continue to propagate even with a vanishingly small rate of
transmission.

In this paper, we use a different approach and we exam-
ine more closely the dynamics of the outbreaks by studying
the predictability of the peaks of the outbreaks. The fore-
cast of peaks can be of paramount importance in practice,
because high peaks are evidently associated with undesir-
able consequences. Indeed, in many ecological systems
the episodes that one would like to forecast are very of-
ten blooms, outbreaks and demographic explosions. Peak

to peak dynamics have been investigated in those systems
and found to be useful to understand the dynamical mech-
anism of those episodes [5].

After the description of the data in Sec. 2, we briefly in-
troduce the tool of peak-to-peak plots in Sec. 3. The results
of our investigation are given in Sec. 4 and, finally, conclu-
sions are given in Sec. 5.

2. Data

The data we use in this study are a compilation of all re-
ported avian cases of avian influenza between 25 Novem-
ber 2003 and 10 March 2007. The data consist of 3346
recorded cases. For each case, the date of the outbreak and
the location (longitude and latitude) are recorded. Individ-
ual cases may either be wild birds that are found (possibly
post-mortem) and determined to be infected with a strain of
avian influenza or the detection of an avian influenza strain
in a domestic flock (most probably then followed by culling
of that flock). Data relating to the magnitude of each inci-
dent are also recorded. Human cases of avian influenza
have also been recorded in the same data set, but for this
study, these are ignored. The entire data set is compiled
from a variety of sources1; Fig. 1 depicts one snapshop.

In a previous study [4], this dataset was analyzed within
a complex networks framework. Specifically, to investi-
gate the geographical and temporal distribution of avian in-
fluenza transmission, susceptible individuals or communi-
ties were treated as nodes on a network, and potential trans-
mission pathways as the links between those nodes. Be-
ing the actual transmission pathways unknown, two nodes
were linked if that transmission could occur only over a lo-
cal area (in both time and space). The network structure
obtained exhibits scale-free properties with a scale expo-
nent of about 1.2. This has the important consequence that
communities within this network are connected with a dis-
tribution of links with infinite mean and variance. Hence,
the disease transmission model does not exhibit a thresh-
old and so the infection will continue to propagate even
with a very low transmissibility. This results is in con-
trast with standard mathematical models of geographical

1The data originally come from World Organization for Animal
Health alerts (see http://www.oie.int/) and World Health Organiza-
tion case reports, and they are all manually entered using ArcGIS
and converted to Keyhole Markup Language (KML) using Arc2Earth
(http://www.arc2earth.com/). The data are available, in a format compati-
ble with Google Earth (KML), from Astrophysical Journal Supplement.
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Figure 1: Part of the data used in this study, overlaid against
a crude map of the coastline of East Asia. Color coding is
by date. The three large clusters correspond to the out-
breaks in Cambodia and in the north and south of Viet-
nam (around Hanoi and Ho Chi Minh City), respectively.
Hainan Island is marked in the northeast portion of the im-
age and outbreaks in Hong Kong are shown in yellow in
the far northeast corner.

transmission of an infectious agent, which assume that the
terrain is locally homogeneous and that the pathogen will
diffuse uniformly. A natural consequence of this formula-
tion is that if the transmissibility of the pathogen is lower
than some threshold, the disease will terminate. However,
if a disease is spreading on a scale-free network, then erad-
ication of that disease is only possible if transmission is
reduced to precisely zero.

In this study, we analyze the dataset within a time-series
framework and, hence, we focus only on the temporal dy-
namic of the avian influenza outbreaks. We aim at inves-
tigating the predictability on time of the avian influenza
outbreaks. In particular, we are interested in assessing
the short time predictability of the outbreaks, or, in other
words, in evaluating whether the world-wide dynamic of
the outbreaks can be modeled with a low-dimensional, pos-
sibly nonlinear, process. Despite our interest in merely
unveiling nonlinear phenomena in the concrete world, the
knowledge of a deterministic rule in the propagation of the
outbreaks would be clearly helpful to design more effective
intervention strategy to control or eradicate avian influenza.

The time series we analyzed is shown in Fig. 2. This
time series were obtained from the dataset by considering2

the amount of recorded outbreaks at any available recorded
event, which are available on a daily basis.

We remark that the time series in Fig. 2 has an irregu-
lar behavior characterized by several peaks. The forecast
of the peaks would be of paramount importance in prac-
tice, because high peaks are evidently associated with un-
desirable consequences. To unravel the existence of peak-
to-peak dynamic, we can make use of peak-to-peak plots,
which are a well grounded tool in the field of nonlinear
time series analysis [5]. The next section is devoted to an
introduction of this tool.

2Independently on the geographical location.
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Figure 2: Time series of the avian influenza outbreaks. The
coarse grain of the sampling is a day. Time equal to 0 cor-
responds to the day of the first recorded outbreaks, i.e. 25
November 2003. Time equal to 1188 corresponds to the
last recorded available outbreak, i.e. 10 March 2007.

3. Method: Peak-to-peak plots

After transient, any deterministic, dissipative, nonlinear
system settles on an attractor and remains there forever if
it is not perturbed [6]. Insights about the attractor can be
obtained, even in the absence of a mathematical model, if
a single variable y of time t has been recorded for a long
period, while the system was on the attractor. In particu-
lar, one can extract from the record all peaks (local max-
ima) of the variable y, say yi (i = 0, 1, 2, . . .), and plot them
one against the previous one, thus obtaining a set of points
(yi, yi+1), called peak-to-peak plot (PPP)3. The same plot
is sometimes called next-amplitude plot, or next-maximum
plot or Lorenz plot [7, 6]. If the regime is periodic and there
are k peaks per period, the PPP is composed only of k dis-
tinct points, By contrast, if the regime is quasiperiodic or
chaotic, i.e. if the attractor is a torus or a strange attractor,
the points of the PPP are all distinct and sometimes display
filiform geometries. More precisely, when the attractor is a
high-dimensional strange attractor, the PPP is a cloud-like
set. Conversely, the points of the PPP lie on a closed regu-
lar curve when the regime is quasiperiodic and lie roughly
on a curve when the attractor is a low-dimensional strange
attractor. An example of PPP from the Lorenz [8] strange
attractor is reported in Fig. 3.

Peak-to-peak analysis is a special case of the standard
technique for reconstructing strange attractors [9]. Indeed,
the observation of the output peaks is equivalent to the ob-
servation of the system on a Poincaré map. For this reason,
it is possible to show that the existence of peak to peak
dynamics (PPD) is simply related to the dimension of the
attractor [5].

One of the advantage of peak-to-peak analysis is that re-
quires only very little effort (it can be performed by hand

3From the same record one can also extract the times of occurrence of
the peaks ti , compute the return times τi+1 = ti+1 − ti and argue about the
return times dynamic.
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Figure 3: An example of PPP obtained through simulation
of the Lorenz system model with standard parameters b =
8/3, r = 28, σ = 10 and y = x3. The PPP is clearly filiform,
i.e. its points are roughly distributed along one curve.

in a few minutes), especially if compared with other tech-
niques of nonlinear time series analysis. Furthermore, the
existence of PPD does allow not only the forecast of the
amplitude of next peak from the previous peak, but it can
be shown that the time of occurrence of that forthcoming
peak can also be predicted [5]. The forecast of the time of
occurrence of the next peak is of great importance, espe-
cially in ecology, where in many cases the amplitude of the
peak is hardly measurable, whereas its time occurrence is
perfectly known [10]. Despite these advantages, the iden-
tifiability of PPD from time series data may require long
data and low noise intensity. Indeed, long time series are
required to reliably identify all the details of the structure
of the PPD, and false peaks due to measurement and pro-
cess noise may have a severe impact on the PPP. In fact,
a false peak f between two successive true peaks a and b
implies the loss of point (a, b) in the PPP and the addition
of two false points (a, f ) and ( f , b). In practice, exclusion
of false peaks through common sense can be effective.

PPP have been used extensively to analyze mathemati-
cal models [11, 12], and have also been pointed out by an-
alyzing laboratory or field data, like in biochemistry [13],
electronics [14] and neurophysiology [15]. In the field of
epidemiology, measles epidemics in New York City have
been found to possess filiform PPP [16]. Encouraged by
this finding, we proceeded to the analysis of our dataset
with PPP.

4. Results

The PPP obtained from the time series in Fig. 2 is re-
ported in Fig. 4. To decrease the possibility of counting
false peaks, we also applied some pre-filterings driven by
common sense. We decided to consider as peak only those
detected peaks with amplitude bigger than a certain thresh-
old. This threshold value may be well related to alert status
triggering actions of control of the outbreaks. We obtained
qualitative similar results for threshold values equal to 5,
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Figure 4: Peak-to-peak plot of the time series in Fig. 2.

10 and 20. The PPP in Fig. 4 clearly does not show any
filiform structure; furthermore, we could not observe any
specific structure by partitioning the domain of the PPP and
inspecting the visits on time of the peaks in those partitions.
This suggests that the global dynamic of the avian influenza
outbreaks does not possess PPD. Importantly, this further
suggests that the outbreaks does not have short-time pre-
dictability. This further corroborates the ill-omened char-
acter of avian influenza.

Since the dynamics of the outbreaks did not reveal any
low-dimensional dynamic, we further processed the time
series from a stochastic point of view by inspecting the
probability distribution of the outbreaks. Indeed, we may
expect that the outbreaks follow a power-law distribution
similar to the one found in [4] for the network degree dis-
tribution. Practically, we look at fitting to the data a proba-
bility distribution P (m) ∝ m−γ, with γ > 1. The estimated
probability distribution of the outbreaks is shown in Fig. 5.
By weighted least squares fitting, we find that the distribu-
tion of the outbreaks well follows (R2 goodness of fit equal
to 0.9770) a power-law distribution with a scale exponent
of ≈ 1.2680. Consequently, because a power-law distri-
bution with such an exponent has neither finite mean or
variance, we expect that avian influenza outbreaks do not
exhibit a positive threshold and the disease will continue to
propagate even with a vanishingly small rate of transmis-
sion. This is in agreement with the results found in [4] and
obtained within a different point of view.

5. Discussions and Conclusions

In this study we have analyzed the temporal dynamic of
global avian influenza outbreaks with peak-to-peak plots.
The analysis suggests that the outbreaks are unpredictable
(i.e. short term predictability) and that they would propa-
gate even with very low transmissibility. This result sup-
ports the finding described in [4], though the latter has
been obtained with a rather different point of view. Im-
portantly, our analysis has the advantage to be parameter
free, while in the previous study the construction of the
spatio-temporal network of disease transmission required
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Figure 5: Probability distribution P(m) of the outbreaks
displayed on a log-log scale. The linear fitting is in red
color. The outbreaks show a power-law distribution with
estimated scale exponent of 1.2680 and goodness of fit
R2 = 0.9770.

the use of two parameters (those defining the local area,
both in time and space, over which the transmission can
occur). Certainly, on the other hand, our analysis looses
spatial specificity and does not allow to argue about the
mathematical modeling of the spatial spreading of the dis-
ease.

The major caveat of our analysis relies in the limited
amount of data at hand and in being a model-free analysis.
Indeed, longer data and support from model simulations
would make the PPP based analysis more reliable.

Future work will endow the investigation of the out-
breaks dynamic over restricted spatial regions, in the at-
tempt to reduce the degrees of freedom that are inherently
high at a world-wide scale.
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