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Abstract— This paper studies dynamics of a ring of
weakly coupled R¨ossler oscillators. The chaotic orbits
of the coupled oscillators are stabilized on periodic orbits
which are slightly different from unstable periodic orbits
embedded within a single R¨ossler oscillator. We observe
spatial phase patterns on the stabilized orbits in the coupled
oscillators. Furthermore, it is confirmed that the stabiliza-
tion remains even if with a small-world topology.

1. Introduction

Synchronization is observed everywhere in the natural
world [1]. Understanding the synchronization in simple
coupled oscillators is considerable significant [2, 3]. The
synchronization occurs not only in coupled periodic oscil-
lators but also in chaotic oscillators. It is well known that
this phenomenon depends on a coupling strength, param-
eters of the oscillators, and a network topology [4]. Re-
cently, the synchronization in coupled oscillators on com-
plex network topologies, such as small-world and scale-
free type, have been studied [4–6].

Iwaseet al. reported that a weak coupling can induce
periodic orbits in coupled R¨ossler oscillators on a scale-
free topology (i.e., Dorogovtsev-model) [9, 10]. Zhanet
al. showed that, in a ring of weakly coupled chaotic os-
cillators, the chaotic orbits are stabilized on unstable pe-
riodic orbits, which are embedded within a chaotic attrac-
tor [7, 8]. This phenomenon can be regarded as one of the
methods for controlling chaos [11] or a new type of ampli-
tude death [12]1 . Although this phenomenon would be
useful in a situation, where one wants to stabilize chaotic
oscillations in weakly coupled real systems, to our knowl-
edge, there have been few effort to investigate it.

The present paper investigates such phenomenon numer-
ically, and answers the following questions.

• Are the stabilized periodic orbits induced by a weak
coupling identical to unstable periodic orbits embed-
ded within a single R¨ossler oscillator?

• Is there a rule in phase patterns on the stabilized or-
bits?

• Does the stabilization remains even if with a small-
world topology?

1Amplitude death is well known as a stabilization of unstable fixed
points induced by mutual interactions among two or more oscillators.

2. Coupled chaotic oscillators

A network is composed of nodes and their edges: os-
cillators and their connections are regarded as nodes and
edges respectively. The present paper focuses on a network
of Rössler oscillators. The oscillator at nodei is described
by three variablesxi , yi , zi and coupling signalui ,

ẋi = −wyi − zi + ϵui

ẏi = wxi + ayi

żi = b+ zi(xi − c)

(i = 1,2, . . . ,N), (1)

ui =

N∑
j=1

Gi j x j , (2)

where the parameters are fixed asw = 0.99,a = 0.165,b =
0.2, c = 10.0 and 0< ϵ ≪ 1 is the coupling strength [7].
A single Rössler oscillator with these parameters behaves
chaotically. Gi j is the element of the coupling matrixG,
whereGi j = G ji = 1 if nodesi and j are coupled andGi j =

G ji = 0 otherwise. The diagonal elements ofG are defined
by Gii = −

∑N
j=1 Gi j . In a ring of coupled oscillators (see

Fig. 1),G is written by

G =


−2 1 0 · · · 1
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...
. . .

...
1 0 · · · 1 −2

 . (3)

Let us review previous work [7]. Figure 2(a) shows the
orbit of a single chaotic R¨ossler oscillator without coupling
(ϵ = 0). The Rössler oscillators are coupled by extremely
weak connection (ϵ = 3.0 × 10−4) on the ring topology as
shown in Fig. 1. Figure 2(b) indicate that chaotic motions

Figure 1:Ring of coupled oscillators (N = 10)
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(a) ϵ = 0 (b) ϵ = 3.0× 10−4

Figure 2:Orbits of Rössler oscillators (N = 10)

Figure 3:Largest Lyapunov exponentλ againstϵ (ring type,N =
10)

in all the oscillators are stabilized on an unstable period-
5 orbit. Figure 3 shows the largest Lyapunov exponentλ
againstϵ ∈ [0,10.0 × 10−4] 2 . It can be seen thatλ ≃
0.09 is maintained in the range ofϵ ∈ [0,1.5 × 10−4] or
ϵ > 3.5×10−4, where all the oscillators are chaotic. On the
other hand, in the range ofϵ ∈ [2.0×10−4,3.0×10−4], all the
oscillators are periodic (i.e.,λ ≃ 0) as shown in Fig. 2(b).
The phenomenon shown in Fig. 3 are observed for arbitrary
N oscillators [7]3. In addition, Zhanet al. suggested that
the stabilized periodic orbit of Fig. 2(b) is identical to the
unstable periodic orbit embedded within the single R¨ossler
oscillator (Fig. 2(a)).

3. Periodic orbits induced by extremely weak coupling

This section investigates the numerical results suggested
in reference [7]. The unstable period-5 orbit embedded
within the single R¨ossler oscillator is extracted numerically
(see Fig. 4). Since the orbits in Fig. 4 and Fig. 2(b) look
like same, the suggestion in reference [7] seems totally nat-
ural. If the suggestion is correct, the coupling signals of all
the oscillators should vanish,ui = 0,∀i ∈ {1, . . . ,N}, after
transient period.4

2λ is estimated by averaging in timet ∈ [2.5×105, 3.0×105] with time
step∆t = 0.01.

3We also confirmed this phenomenon forN = 2 ∼ 100.
4The control signals for the controlling chaos and the coupling signals

for the amplitude death vanish when the stabilization is achieved.

Figure 4:Unstable period-5 orbit and Poincaré section

(a) Oscillator 1 (b) Oscillator 2

Figure 5: Stabilized orbit in coupled two R¨ossler oscillators
(ϵ = 3.0× 10−4,N = 2)

To check the suggestion, we consider the simplest case
(N = 2). The orbits of two oscillators after coupling are
shown in Figs. 5(a) and (b). As a matter of course, these
orbits also resemble the unstable periodic orbit in Fig. 4.
The coupling signalsu1,2 after transient period are shown in
Fig. 6. If the suggestion were correct, these signals should
vanish. However, the signalsu1,2 are always added to the
oscillators: they do not synchronize completely.

The difference of these orbits on a Poincaré section is
estimated. First of all, the following Poincaré section is
defined (dashed line in Fig. 4):

Σ := {(x, y, z) : y = 0, x < 0} . (4)

The unstable period-5 orbit in Fig. 4 intersects withΣ at
the points

X
∗
(k) :=

[
x∗(k) 0 z∗(k)

]T
, k = 1, . . . , 5. (5)

x∗(k) are defined as follows:

x∗(1) < x∗(2) < x∗(3) < x∗(4) < x∗(5) < 0.

In the same way, the points where the periodic orbit of cou-
pled oscillatori intersects withΣ are given by

X i(k) :=
[
xi(k) 0 zi(k)

]T
, k = 1, . . . , 5. (6)

where the following order is also defined:

xi(1) < xi(2) < xi(3) < xi(4) < xi(5).
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Figure 6:Coupling signalsui (N = 2)

Figure 7:X
∗
(1) andX1(1) on sectionΣ

Figure 7 showsX
∗
(1) andX1(1), which are obviously sep-

arated. It is confirmed numerically that∥X∗(k)−X1,2(k)∥ >
0.001,∀k ∈ {1, . . . , 5}. This result concludes that the sug-
gestion in reference [7] is not strictly correct. However,
it seems that the difference does not matter in a situation,
where one can tolerate margins of such error.

4. Spatial phase patterns

In this section, we consider the spatial phase patterns in
the coupled oscillators.

Figure 8 shows the time series data ofxi for coupled four
oscillators (N = 4). Although all the oscillators settle on a
period-5 orbit, their amplitudes are different at any time. In
addition, all the oscillators intersect withxi = 0 almost at
the same time. These facts show that the phases of all the
oscillators are locked. The phase locked pattern depends
on the initial condition.

Now we investigate the patterns in detail. Let us as-
sume the following situation: the orbits of all the oscillators
X i(k) (k = 1, . . . ,5) are stabilized near the unstable period-
5 orbit X

∗
(k) (k = 1, . . . , 5). Furthermore, we assume that

the orbit of oscillatori on Σ at t = t0, xi(t0), is located at
xi(t0) ≃ x∗(1). The nearest neighbors of oscillatori at t = t0
are located atxi−1(t0) ≃ x∗(m) andxi+1(t0) ≃ x∗(n) respec-
tively, wherem ∈ {1, . . . , 5} andn ∈ {1, . . . ,5} depend on
the initial conditions. This pattern is defined as (m 1 n).
Our numerical simulations provide the frequency distribu-

Figure 8:Time series dataxi (i = 1, . . . , 4). (ϵ = 3.0× 10−4,N =
4)

Figure 9: Frequency distribution of pattern (m 1 n) (ϵ = 3.0 ×
10−4,N = 10).

tion of the following 15 patterns:

(111), (112), (113), (114), (115),
(212), (213), (214), (215), (313),
(314), (315), (414), (415), (515).

(7)

Since the ring topology described by Eq.(3) is symmetry,
the permutation ofm andn can be ignored. For example,
the pattern (3 1 2) is treated as the pattern (2 1 3).

The frequency distribution of pattern (m 1 n) is es-
timated by the algorithm given in appendix A. Figure 9
shows the frequency distribution forN = 10. We have con-
firmed that all the frequency distributions forN = 4 ∼ 10
are almost the same as Fig. 9 qualitatively. It must be
emphasized that the pattern (111)，(112)，(113)，(114)，
(115) never occur. This fact implies that the nearest neigh-
bor oscillators do not synchronize.

5. Small-world topology

We investigate whether the stabilization in the coupled
oscillators (N = 10) remains even if with a small-world
topology. The shortcuts, the dotted lines in Fig. 1, are
added to the network. The 2l oscillators, which are not
nearest neighborhood on the ring, are chosen at random and
thel shortcuts are added. The largest Lyapunov exponentλ
is estimated againstϵ ∈ [0, 10.0× 10−4] five times depend-
ing on randoml shortcuts. Figure 10 showsλ against the
coupling strengthϵ, whereλ is the average value. Although
the range (λ ≃ 0) is narrow in Fig. 10 compared with Fig.
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Figure 10:Largest Lyapunov exponentλ againstϵ (small world
type,N = 10, l = 3)

3, all the oscillators are periodic. The stabilization can be
confirmed even with a small-world topology.

6. Conclusion

This paper investigated the synchronization in a ring of
weakly coupled R¨ossler oscillators. The main results are
summarized below.

• The stabilized periodic orbits are slightly different
from the unstable periodic orbit embedded within the
single Rössler oscillator.

• Several spatial phase patterns on the stabilized orbits
occur in the coupled oscillators.

• Stabilization remains even if with a small-world topol-
ogy.

A. Algorithm to estimate the frequency

The frequency distribution is estimated by the follow-
ing procedures. 1) The initial values of the oscillators are
chosen at random on a single chaotic attractor; 2) If the fol-
lowing conditions, (a) and (b), are satisfied fort < 2× 104,
one proceed to the next step, otherwise go back to step 1);

Condition (a) λ < 0.001

Condition (b) xi(t) ≃ x∗(ki), ki ∈ {1, . . . ,5},∀i ∈
{1, . . . ,N}

3) The frequency distribution of each situation is accumu-
lated forN oscillators judging by the pattern of (7). 4) If the
total of the frequency is less than 1000, one proceed to step
1), and otherwise this estimation is finished. The condition
(a) shows that the orbits of all the oscillators are almost set-
tled down on the periodic orbits. The condition (b) shows
that the phase of all the oscillators is locked. Remark that
one cannot proceed from step 2) to step 3) depending on
the initial values. The probability that one can proceed is
about 5% in our simulation.
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