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Abstract—We report on a numerical investigation of

three-dimensional circulation in the Southern Ocean over

a domain extending from Antarctica to -36 degrees latitude

and from the sea surface to a depth of 500 metres. The high

latitude Southern Ocean is a region low in measurements

but important for climatic and biological applications. Our

investigation is based upon velocity data simulated by a

state-of-the-art 1/4 degree resolution global ocean model.

We construct an approximate transfer operator from the

velocity data and identify dominant coherent circulation

structures from eigenmodes of the transfer operator.

1. Introduction

Coherent structures play a crucial role in explaining

transport in non-autonomous dynamical systems such as

ocean flows. Their ecological impact includes the trap-

ping of material such as nutrients, phytoplankton, and pol-

lutants. These Lagrangian structures are very difficult to

identify as they are not revealed by the underlying Eulerian

velocity fields.

While persistent ocean features such as gyres and ed-

dies may be observed and tracked by satellite altimetry [1],

detecting and tracking the regions that act as barriers to La-

grangian flow pathways is more ambiguous. This is true

even if the velocity field is perfectly known.

Froyland et al. [2] applied transfer operator techniques

to identify two key coherent structures in the Southern

Ocean, namely the Weddell and Ross Gyres. The trans-

fer operator approach identified gyre regions on the ocean

surface with 10% greater coherence than standard oceano-

graphic techniques based on sea surface height measure-

ments. The less direct method of finite time Lyapunov ex-

ponents was also studied in [2] and was found to perform

extremely poorly.

The study [2] was restricted to surface ocean flow. In

the present work we extend the techniques used in [2] to

the full three-dimensional flow. Our method is based upon

numerically constructing a transfer operator that controls

the ocean circulation from a time t to a short time later

t + τ. The eigenfunctions of this transfer operator corre-

sponding to large positive eigenvalues directly reveal dom-

inant “almost-invariant” structures in the surface flow over

the time period considered. These structures retain their

shape over the period [t, t + τ] and thus “trap” most of the

water inside them with only minimal leakage. In addition,

our approach allows us to quantify the mass leakage of the

identified regions. We demonstrate that the surface gyre

features reported in [2] in fact extend deep below the sur-

face to control particle transport over large regions of the

Southern Ocean.

2. Input data and non-autonomous flow model

Our input data is generated by the ORCA025 global

ocean model [3]. In the Southern Ocean, the model grid

follows a Mercator projection. Eddy characteristics of the

model compare favorably with satellite and drifter obser-

vations [3]. In this paper we use the data of the year 2004.

The available model output consists of 3D fields of velocity

averaged over a month.

As we consider the Southern Ocean we work on a subset

X of a solid annulus X = S 1 × [−76,−36] × [−500, 0) with

S 1 parameterised in degrees from −180o to 180o. Consid-

ered as a non-autonomous dynamical system, the ocean

flow may be described by (x, t, τ) 7→ Φ(x, t; τ), where

Φ : X ×R×R→ X and Φ(x, t; τ) is the terminal point in X

of a trajectory beginning at x ∈ X at time t and flowing for

τ time units. A trajectory x(t) := Φ(x0, t0; t) is a solution to

the non-autonomous ODE dx
dt
= f (x(t), t) with initial con-

dition x(t0) = Φ(x0, t0; 0). The vector field f : X × R→ R3

is obtained from the output of the ORCA025 model. We

note that the ocean flow is volume preserving.

2.1. Vertical transport associated with the mixed layer

Vertical transport of particles is modelled in two ways.

Vertical transport associated with subduction is already in-

cluded as vertical particle velocities in the ORCA025 vec-

tor field. These vertical velocities accurately represent ver-

tical particle transport in the deep ocean, however, nearer

to the ocean surface the mixing of particles due to wind-

driven currents and the breaking of surface waves is very

high. The mixed layer (ML) refers to a layer near the

surface where this more rapid mixing occurs. This layer

extends from the surface down to the mixed layer depth
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(MLD). The ORCA025 model provides a monthly inte-

grated MLD field which is based on the difference between

the density at the surface and the density at depth. The

depth at which this difference exceeds 0.3kg ·m−3 is the

mixed layer depth; see [4]. Within the ML, temperature

and salinity are almost constant. The depth of the ML

varies from day to day and from season to season. Due

to surface cooling and the resulting gravitational instabil-

ity, mixed layers are generally deeper during late winter

and shallowest during summer.
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Figure 1: The mixed layer depth in metres on X during

January 2004.

3. Almost-invariant sets, coherent structures, and

transfer operators

Let µ denote three dimensional volume measure, nor-

malised so that µ(X) = 1. The measure µ is invariant under

Φ; formally, for each τ ≥ 0, µ(Φ(A, t;−τ)) ≈ µ(A). We

will say that a set A ⊂ X is Φ−invariant over [t, t + τ] if

A = Φ(A, t + s;−s)) for all 0 ≤ s ≤ τ. Coherent struc-

tures obey an approximate invariance principle over short

periods of time. We shall call a set A ⊂ X almost-invariant

if

ρt,τ(A) :=
µ(A ∩Φ(A, t + τ;−τ))

µ(A)
≈ 1. (1)

The ratio in (1) is the proportion of the set A that remains

in A under the flow from time t to time t + τ. Clearly, the

closer this ratio is to unity, the closer the set A is to being

invariant. In order to discover coherent structures in the

flow Φ, we seek to find dominant almost-invariant sets.

The notion of almost-invariant sets arose as a means of

discovering dominant geometric structures in general dy-

namical systems [5] and has been refined and applied in a

variety of settings, e.g. [6, 7, 8]. In order to locate these

almost-invariant sets we introduce a transfer operator de-

scribing flows for short periods.

Figure 2: Coherent structures for the Southern Ocean, in-

cluding the Antarctic Circumpolar Current and its three as-

sociated fronts, the Weddell Gyre, and the Ross Gyre.

We define a linear operator Pt,τ : L1(X,m)	 by

Pt,τg(x) =
g(Φ(x, t + τ;−τ))

| det DΦ(Φ(x, t + τ;−τ), t; τ)|
. (2)

If there is a Φ-invariant set A ⊂ X over [t, t + τ], then

Pt,τχA = χA. Thus χA is an eigenfunction of Pt,τ with

eigenvalue 1. Sets A that are almost-invariant correspond

to eigenfunctions of Pt,τ with real eigenvalues very close to

1 [5, 7].

To access these eigenfunctions numerically, we con-

struct a finite-dimensional Galerkin approximation of Pt,τ

based on a fine partition {B1, . . . , Bn} of X. Following

Ulam’s approach [5, 6, 7, 8] we form the transition matrix

Pt,τ;i, j =
m(Bi ∩Φ(B j, t + τ;−τ))

m(Bi)
. (3)

The matrix Pt,τ is stochastic. The entry Pt,τ;i, j may be inter-

preted as the probability that a point selected uniformly at

random in Bi at time t will be in B j at time t + τ.

4. Numerical implementation

4.1. Oceanic domain and discretization

For our computational studies we create a partition of

X via a uniform three-dimensional grid of m = 114688

boxes. Each box has side lengths of 1.4 degrees longi-

tude, 1.4 degrees latitude, and 31.25 metres depth. We set

X =
⋃

i:|| f (x,t0)||>10−6 ∀ x∈Bi
Bi, where t0 denotes January 1st

2004. X is an approximation of the oceanic domain with

the continents and islands removed where n = 92518.

To calculate the transition matrix Pt,τ, each box Bi, i =

1, . . . , n is filled with N uniformly distributed test points
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yi,ℓ ∈ Bi, ℓ = 1, . . . ,N. For each i = 1, . . . , n we calculate

Φ(yi,ℓ, t; τ), ℓ = 1, . . . ,N by numerical integration and set

Pt,τ;i, j ≈
#{ℓ : yi,ℓ ∈ Bi,Φ(yi,ℓ, t; τ) ∈ B j}

N
(4)

where N = 512 in the experiments reported here. The box-

discretization of X and the construction of Pt,τ is carried out

efficiently using the software package GAIO [9].

4.2. Model interpolation and trajectory integration

The ORCA025 model is given at a resolution of 0.25 de-

grees of longitude and latitude, and 46 non-uniform depth

layers. Velocity field values for x lying between grid points

are affinely interpolated independently in the longitude, lat-

itude and depth directions. The velocity field f (x, t) for

t between grid points is produced by linear interpolation.

Calculation of Φ(yi,ℓ, t; τ) is carried out using a standard

Runge-Kutta approach with stepsize of 3 days. Within 3

days the vast bulk of trajectories will flow only to a neigh-

bouring grid set in the grid upon which the velocity field is

defined. Since f (x, t) is independently affine between grid

points, the numerical integration error should be small. We

refer the reader to [2] for a discussion on choice of box

discretisation versus flow time τ.

4.3. Computation of MLD mixing

The mixed layer particle mixing is not captured by the

vector field f . We make a standard assumption that the ML

is well mixed. In order to simulate this with our sample

trajectories, we proceed as follows. We write y ∈ X as y =

(Lon(y),Lat(y),Dep(y)), and let MLD(t,Lon(y),Lat(y)) de-

note the mixed layer depth for the water column located at

(Lon(y),Lat(y)) at time t.

1. Integrate test point yi,ℓ for one month (τ = 1) to pro-

duce y′ := Φ(yi,ℓ, t0; 1).

2. Test whether y′ lies in the ML for the current month.

If it does, replace y′ with (Lon(y′),Lat(y′), zpert) where

zpert is randomly sampled from a uniform distribution

on the interval [MLD(t,Lon(y′),Lat(y′)), 0]. If y′ does

not lie in the ML, make no vertical perturbation.

3. Integrate y′ for a further month and repeat step 2.

4.4. Eigenvalue and eigenfunction calculation

Define a probability measure µn on X =
⋃n

i=1 Bi by

pi =
Volume of Bi

Volume of X
, (5)

and µn(A) =
∑n

i=1 pi · m(A ∩ Bi)/m(Bi). Let A =
⋃

i∈I Bi

where I ⊂ {1, . . . , n}. Then it is straightforward to show

[7]

ρt,τ(A) ≈

∑

i, j∈I piPt,τ;i, j
∑

i∈I pi

. (6)

The expression (6) is very close to equality and in the limit

as n→ ∞ and the diameter of the boxes {Bi}
n
i=1

approaches

zero, one obtains equality.

We transform the matrix Pt,τ into a “time symmetric”

matrix Rt,τ via

Rt,τ;i, j =

(

Pt,τ;i, j +
p jPt,τ, j,i

pi

)

/2. (7)

The matrix R is stochastic, has p as a fixed left eigenvector,

and satisfies important maximization properties [8] related

to almost-invariance. As in [8] we use the right eigenvec-

tors v(k) of R to detect almost-invariant sets. The matrix

Rt,τ;i, j is typically very sparse and we are interested only in

the large spectral values near to 1, which may be efficiently

computed by Lanczos iteration methods.
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Figure 3: Coherent structures in the Weddell and Ross Seas

are highlighted by large values of w := v(4) + v(6).
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Figure 4: Values of min{ρ(A+c ), ρ(A−c )} vs. c. We choose the

global maximum for positive c as we wish to select dark

coloured regions. See [10] for further details on the method

of selecting c.

5. Results

We demonstrate that our method detects persistent struc-

tures in the Southern Ocean flow in the Weddell and Ross

Seas. We computed the 20 largest eigenvalues of R (rang-

ing from λ2 = 0.9933 to λ20 = 0.9796) and the cor-

responding right eigenvectors. The fourth eigenfunction
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Figure 5: Three-dimensional coherent structures in the Weddell and Ross Seas, and in the South Pacific are highlighted

by large values of w. Boxes Bi, i = 1, . . . , n with wi < c = 0.0035 have been removed.

(corresponding to λ4 = 0.9910) identifies a coherent struc-

ture in the Weddell Sea, and the sixth eigenfunction iden-

tifies a coherent structure in the Ross Sea (corresponding

to λ6 = 0.9884). Both structures are visible on the ocean

surface. In order to treat both structures simultaneously

we consider a linear combination of the two eigenfunctions

w := v(4) + v(6), see Figure 3 for w restricted to the surface.

These results are in very good agreement to the studies in

[2] where only the surface velocity field was considered

and not the full 3d dynamics as here. They also closely

match the gyres shown in Figure 2.

To extract the coherent structures we use a heuristic

ansatz as described in [10] (see also [7]): we define sets

A+c and A−c by

A+c :=
⋃

i:wi≥c

Bi, A−c :=
⋃

i:wi<c

Bi, (8)

and choose c in such that a way that both ρ(A−c ) and ρ(A+c )

are maximized, see Figure 4. The application of this

approach gives three subsurface structures as A+c (where

c = 0.0035), two in the Weddell and Ross Seas respec-

tively, and another in the Southern Pacific Ocean, see Fig-

ure 5. We obtain a coherence value of ρ(A+c ) = 0.9266,

or in other words, 92.7% of water mass is retained in A+c
after two months of flow. If we consider the coherence of

the two gyres without the Southern Pacific Ocean structure,

we obtain ρ(A
+,W
c ) = 0.9293, or 92.9% of the water mass

is retained in the Weddell region, and ρ(A
+,R
c ) = 0.8972 for

the Ross region.
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