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Abstract—Complex networks are everywhere. Over the
last ten years, various approaches have been proposed for
controlling complex networks. Pinning control, as an effec-
tive method for controlling complex networks, has received
increasing attention in recent years. This paper will briefly
review some main advances in pinning control of complex
networks, with emphasis on the potential applications in
power electronic grid.

1. Introduction

Complex networks are everywhere today [1, 2]. Typi-
cal examples include the Internet, World Wide Web, power
grid networks, communication networks, scientific citation
networks, social networks, cellular neural networks, ge-
netic regulatory networks, and so on [3, 4]. As we know
now, the representative characteristics of complex networks
are a large number of interconnected nodes and complex
topological structure [5, 6, 7].

It is well known that the immune, vascular, endocrine,
and nerve systems of our bodies regulate chemical reac-
tions to keep equilibria in the face of ongoing attacks from
disease and diet [4]. The above process is called home-
ostasis in biology. Here, the similar regulation processesof
complex networks are called control [8, 9, 10].

Over the last ten years, numerous approaches have been
proposed to control or intervene the dynamical behaviors
of various real-world complex networks [11, 12, 13]. Since
the real-world complex networks often have a large number
of nodes, it is very difficult or even impossible to control
all nodes to realize a given control goal [14, 15]. There-
fore, we hope to control a portion of nodes to achieve the
same control goal. In fact, the above idea of control of a
portion of nodes is very effective in many real-world com-
plex networks. Thus the above control technique of a por-
tion of nodes is called pinning control. In 1997, Grigoriev,
Cross, and Schuster introduced the pinning control of spa-
tiotemporal chaos [5]. In 2004, Li, Wang, and Chen pre-
sented the pinning control of a complex dynamical net-
work to its equilibrium [6]. In 2008, Zhou, Lu, and Lü
studied the pinning adaptive synchronization of a general

complex dynamical network [13]. In 2009, Wu, Zhou, and
Chen further investigated the cluster synchronization of lin-
early coupled complex networks under pinning control [8].
Moreover, there are numerous results reported over the last
few years. The intended purpose of this paper is to briefly
review some recent advances in pinning control of com-
plex networks. We hope to reflect the current state of the
pinning control of complex networks.

This paper is then organized as follows. Section 2 intro-
duces the basic idea of pinning control and its challeng-
ing questions. The adaptive pinning synchronization of
complex dynamical networks is presented in Section 3. In
Section 4, the pinning synchronization of undirected and
directed complex dynamical networks is then discussed.
Moreover, the global pinning controllability of complex
networks is further investigated in Section 5. Finally, some
potential applications are explored in Section 6.

2. Preliminary

This section will briefly review the basic idea of pinning
control and its challenging questions.

As we know now, complex networks often have a large
number of network nodes. The pinning control is proposed
based on the following two main motivations: i) It is usu-
ally impossible to achieve a given control goal by control-
ling every node; ii) It is likely possible to reduce the num-
ber of controllers under the condition of the same control
goal. Therefore, the basic idea of pinning control is to real-
ize the same or even better control goal by employing a por-
tion of network nodes. In general, there are two interesting
basic questions in pinning control of complex networks: (i)
How many nodes should a network with a given topological
structure and coupling strength be pinned to realize the de-
sired control goal? (ii) How much coupling strength should
a network with a given topological structure and pinning
nodes be applied to achieve the desired control goal? In
2008, Zhou, Lu, and Lü gave a positive answer to the above
two fundamental questions for a special case [13].

In pinning control, the selection of network nodes is also
an interesting question. It is well known that there are
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Figure 1: [14] (a) Plot of sub-state of the largest-degree
node for the specifically pinning control scheme; (b) plot of
sub-state of the node with largest degree for the randomly
pinning control scheme.

two basic selective schemes: random scheme and specific
scheme. The random scheme is to pin a portion of ran-
domly selected network nodes. And the specific scheme is
to pin a portion of network nodes by following a given rule,
such as the degrees of network nodes and the betweenness
of network nodes. A natural question is: ”which kind of
pinning schemes is much better?”.

Fig. 1 shows the control effectiveness of the random
scheme and specific scheme for a scale-free network [14].
Here, the scale-free network has 60 network nodes with
the coupling strengthc = 8.246 andl = 15. In specific
scheme, one selects the top 15 largest-degree nodes and
control gain is 29.7603. In random scheme, one randomly
select 15 nodes and the control gain is 513.3709. It means
that the specific scheme is much more effective than the
random scheme for a scale-free network. However, it is not
always true for all cases. Sometimes, the random scheme
is much more effective than the specific scheme. It depends
on the detailed network structure and node dynamics.

Moreover, the pinning control technique can be com-
bined with some traditional or modern control methods,
such as switching control, adaptive control, and robust con-
trol.

3. Adaptive Pinning Synchronization of Complex Dy-
namical Networks

To answer the above two fundamental questions in Sec-
tion 2, this Section provides a simply approximate formula
for estimating the detailed number of pinning nodes and
the magnitude of the coupling strength for a given general
complex dynamical network [13]. In this Section, all nota-
tions are described in [13].

Consider a general complex dynamical network consist-
ing of N identical nodes with linearly diffusive couplings
[13], which is given by

ẋi = g(xi , t) +
N∑

j=1

ci j A x j + vi(x1, · · · , xN), (1)

where 1 ≤ i ≤ N, xi = (xi1, xi2, · · · , xin)T ∈ Rn is
the state vector of theith node,g : Ω × R+ → Rn

is a nonlinear smooth vector field,̇x = g(x, t) is the
node dynamics,vi ∈ Rn are the control inputs satisfying
vi(x, · · · , x) = 0. And A ∈ Rn×n is the inner-coupling
matrix andC = (ci j )N×N ∈ RN×N is the coupling con-
figuration matrix. If there exists a link from nodei to node
j ( j , i), thenci j > 0 andci j is the coupling strength; oth-
erwise,ci j = 0. Suppose thatC is an irreducibly diffusive
matrix satisfying

N∑

j=1

ci j = 0 .

Let x = s(t ; t0, x0) ∈ Rn with x0 ∈ Rn, denoted as
s(t), be a solution of the node systeṁx = g(x, t). Thus
S(t) = (sT(t), sT(t), · · · , sT(t))T ∈ Rn×N is a synchronous
solution of the general complex dynamical network (1).
Here, s(t) can be an equilibrium point, a periodic orbit,
an aperiodic orbit, even a chaotic orbit in the phase space
[3, 13].

Proposition 1 [13] (P1) Assume that‖Dg(s)‖2 is bounded,
where Dg(s) is the Jacobian ofg evaluated atx = s.
That is, there exists a nonnegative constantα satisfying
‖Dg(s)‖2 ≤ α.

Theorem 1 [13] Assume thatP1 holds. If there exists a
natural number1 ≤ l < N satisfyingλl + 1 < −

α
γ
, then

the synchronous solutionS(t) of the general complex net-
work (1) is locally asymptotically stable under the pinning
adaptive controllers
{

vi = −piei , ṗi = qi‖ei‖
2
2, 1 ≤ i ≤ l

vi = 0, (l + 1) ≤ i ≤ N ,
(2)

where qi are positive constants for1 ≤ i ≤ l.

Rewrite the general complex network (1) as follows:

ẋi = Gxi + h(xi , t) +
N∑

j=1

ci j A x j + vi(x1, · · · , xN), (3)

where 1≤ i ≤ N.
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Proposition 2 [13] (P2) Assume thath(x, t) is Lipschitz
continuous. That is, there exists a Lipschitz constantµ sat-
isfying‖h(xi , t) − h(s, t)‖2 ≤ µ ‖ei‖2 for 1 ≤ i ≤ N.

Theorem 2 [13] Assume thatP2 holds. If there exists a
natural number1 ≤ l < N satisfyingλl + 1 < −

β+µ

γ
,

then the synchronous solutionS(t) of the general complex
network (3) is globally asymptotically stable under the pin-
ning adaptive controllers
{

vi = −piei , ṗi = qi‖ei‖
2
2, 1 ≤ i ≤ l

vi = 0, (l + 1) ≤ i ≤ N ,
(4)

where qi are positive constants for1 ≤ i ≤ l.

4. Pinning Synchronization of Complex Dynamical
Networks

In this Section, the pinning synchronization of undi-
rected and directed complex dynamical networks will be
further investigated, where all notations are given in [7].

A general pinning controlled network is described by [7]

ẋi(t) = f (xi(t), t) + c
N∑

j=1

Gi jΓx j(t) + ui, i = 1, 2, . . . , l,

ẋi(t) = f (xi(t), t) + c
N∑

j=1

Gi jΓx j(t), i = l + 1, 2, . . . ,N. (5)

where

ui = −cdiΓ(xi − s(t)) ∈ Rn, i = 1, 2, . . . , l, (6)

aren-dimensional linear feedback controllers with all the
control gainsdik > 0.

Proposition 3 [7] P3 There exists a constant matrix K sat-
isfying

(x− y)T( f (x, t) − f (y, t)) ≤ (x− y)TKΓ(x− y), (7)

where∀x, y ∈ Rn.

Theorem 3 [7] Assume thatP3 holds. The controlled
undirected network (5) is globally synchronized if the fol-
lowing condition is satisfied:

IN ⊗ (KΓ) + c(G− D) ⊗ Γ < 0, (8)

where⊗ is the Kronecker product,

D = diag(d1, . . . , dl
︸     ︷︷     ︸

l

, 0, . . . , 0
︸  ︷︷  ︸

N−l

),

and IN is the N-dimensional identity matrix.

Theorem 4 [7] Assume that the condition (7) holds andΓ
is a positive definite matrix. Then, the adaptively controlled
undirected network (9) is globally synchronized for a small
constantα > 0.

5. Global Pinning Controllability of Complex Net-
works

In this Section, the global pinning controllability of com-
plex dynamical networks will be further explored, where all
notations are given in [11].

Proposition 4 [11] (P4) If the feedback gain matrix K,
the inner linking matrix B, and the coupling strengthσ
are chosen such that for every t≥ t0, and for every
y1, . . . , yN ∈ Rn

λi(y, t) < −µ, i = 1, . . . , nN,

where y= [yT
1 , . . . , y

T
N]T , µ > 0, {λi(y, t)}nN

i=1 are the eigen-
values of the matrix H(y, t) defined by

H(y, t) = D(y, t) − 2(σ L ⊗ sym QB+ P⊗ sym QK)

with Q positive definite symmetric matrix inRn× n, and

D(y, t) = 2Diag[symQFs(t),s(t)−y1, . . . , symQFs(t),s(t)−yN ] .

Then, the dynamical system

ė(t) = F (e(t), t)e(t) − (σ L ⊗ B+ P⊗ K)e(t) ,

where

F (e(t), t) = Diag[Fs(t),s(t)−e1(t), . . . , Fs(t),s(t)−eN(t)],

is globally exponentially stable about the origin, implying
that the network

ẋi(t) = f (xi(t)) − σ B
N∑

j=1

l i j x j(t) + ui(t)

is globally pinning-controllable.

Corollary 1 [11] If, for some Q positive definite symmet-
ric matrix in Rn× n, condition sym QK= κ sym QB is sat-
isfied, symQB is a positive definite matrix and

λmin(σ L + κ P)λmin(symQB) > α‖Q‖,

where the positive constantα satisfies‖Fξ,ξ̄‖ ≤ α, then

ẋi(t) = f (xi(t)) − σ B
N∑

j=1

l i j x j(t) + ui(t)

is globally pinning- controllable.

Corollary 2 [11] If for some Q positive definite symmetric
matrix inRn× n condition sym QK= κ sym QB is satisfied
and symQB is a positive definite matrix, and the feedback
gain κ satisfies

σκ(
λ2(L)

N )

σ( λ2(L)
r ) + κ

> α‖Q‖
1

λmin(symQB)

then

ẋi(t) = f (xi(t)) − σ B
N∑

j=1

l i j x j(t) + ui(t)

is globally pinning-controllable.
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ẋi(t) = f (xi(t), t) + c(t)
N∑

j=1

Gi jΓx j(t) − c(t)diΓ(xi(t) − s(t)), i = 1, 2, . . . , l,

ẋi(t) = f (xi(t), t) + c(t)
N∑

j=1

Gi jΓx j(t), i = l + 1, 2, . . . ,N,

ċ(t) = α

N∑

j=1

(x j(t) − s(t))T
Γ(x j(t) − s(t)). (9)

6. Concluding remarks

This paper has briefly reviewed some recent advances in
the pinning control of complex dynamical networks. It is
certain that the pinning control will have a good prospect of
application. For example, the operator of an electric power
grid hopes to find an effective network model with pinning
control design that will help form predictions of supply and
demand to keep the stability of the whole power network
[4], which requires the combined expertise of statisticians,
economists, and power engineers. Moreover, the cost and
effects of pinning control for network performance should
be further investigated in the near future.
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