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Abstract– We investigate the effect of noise 
amplification by chaotic dynamics in semiconductor lasers 
used for generation of random bit sequences. We measure 
the memory time of initial conditions after noise is added 
in the chaotic lasers. We found that the memory time 
decreases as the noise strength is increased. We also 
measure the predictability time in the case where an 
ensemble of states which correspond to the same bit 
sequence in the past bit is used for the prediction of 
random bit sequences. It is found that the predictability 
time can be shorter than the interval between samples used 
to obtain bits, so the bit sequences cannot be predicted 
even using optimal nonlinear laser models. 
 
1. Introduction 
 

Physical random processes are often used as entropy 
sources in random number generators used for 
information security and computations [1,2]. Random 
phenomena such as photon noise, thermal noise in 
resistors and frequency jitter of oscillators have been used 
as physical entropy sources for physical random number 
generators [3-11]. However, non-deterministic generators 
have been limited to much slower rates than pseudo-
random number generators up to tens of megabit per 
second (Mbps) due to limitations of the rate and power of 
the mechanisms for extracting bits from physical noise 
[3,4].  

Recently, a fast physical random bit generator using 
chaotic semiconductor lasers has been demonstrated that 
generate random bit sequences that pass standard tests of 
randomness at a rate of up to 1.7 gigabit per second 
(Gbps) [12]. The performance of physical random number 
generation could be greatly improved by using chaotic 
laser devices as physical entropy sources. The output of 
chaotic devices can be both unpredictable as well as 
statistically random because they generate large amplitude 
random signals from microscopic noise by nonlinear 
amplification and mixing mechanisms [13,14]. It is 
important to measure the effect of noise amplification by 
chaotic dynamics to estimate predictability of random 
numbers generated by chaotic semiconductor lasers. 

In this study, we present a numerical analysis of the 
characteristic time for amplification of noise by chaotic 
dynamics in semiconductor lasers, and its dependence on 

the noise strength. We define and estimate two 
characteristic times, the memory time and the 
predictability time, and present them as evidence for the 
unpredictability of bit sequences obtained by sampling the 
optical output of the chaotic lasers. 

 
2. Method 
 

A sequence of bits obtained by sampling a theoretically 
ideal deterministic chaos system is, in principle, 
completely predictable if the initial states of the system 
are known with infinite precision. However, a sequence 
generated by a real chaotic laser is predictable only if the 
rate of information about the laser state obtained by 
observing the generated sequence is greater than the rate 
of entropy production by amplification of noise by the 
chaotic dynamics in the laser. 
Theoretically, the behavior of the chaotic state of the 

laser can be modeled by a set of equations of motion for 
the dominant macroscopic (large amplitude) degrees of 
freedom, and a stochastic noise due to huge number of 
microscopic (small amplitude) degrees of freedom. The 
chaotic state of a laser is a distinct state of the laser clearly 
distinguishable from the stable lasing state (which is 
obtained at different parameter settings) by the large 
amplitude, wildly varying oscillations [15-18]. When the 
oscillation of the macroscopic degrees of freedom is 
chaotic, the effects of microscopic noise are rapidly and 
continuously amplified [13,14]. So even if the 
macroscopic state of the laser is observed with high 
resolution at some time instant, at some time T later it will 
not be possible to predict whether the state corresponds to 
a “1” or a “0”, if T is longer than a characteristic time. In 
the case of random bit generation, this unpredictability is a 
desired feature, so it is important to sample at time 
intervals longer than the characteristic time. The 
characteristic time depends on the amplification and 
mixing properties of the chaos dynamics, and the 
amplitude of the microscopic noise.  
 
3. Numerical model 
 

The set of equations for the semiconductor laser with 
delayed optical feedback is described as follows (Lang-
Kobayashi equations) [19]. 
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where, E  is the electric field amplitude, φ  is the phase, 
N  is the carrier density. NG  is the gain coefficient, 0N  is 
the carrier density at the transparency, )/(10 pNth GNN τ+=  
is the threshold carrier density for the solitary laser, κ  is 
the feedback coefficient, pτ  is the photon lifetime, inτ  is 
the optical round-trip time in the cavity of the 
semiconductor laser, sτ  is the carrier lifetime, τ  is the 
external cavity round-trip time, α  is the linewidth 
enhancement factor, and J  is the injection current density. 
ω  is the angular optical frequency. D is the noise strength. 
An additive white Gaussian noise is added in Eq. (1). We 
numerically integrated these equations by employing the 
Runge-Kutta-Gill method. The parameters are set as 
follows: NG =8.4 × 10-13 m3s-1, 0N =1.4 × 1024 m-3, 

pτ =1.927 ps, inτ =8.0 ps, sτ =2.04 ns, τ =2.0 ns, α =5, 
J =1.44 thJ  ( sthth NJ τ/= ), κ =0.04. 
 
4. Temporal waveforms and random bit generation 
 

Figure 1 shows an example of five trajectories starting 
from the same initial state and separating due to noise. 
Different time series of noise are added at t = 0 and 
chaotic trajectories are plotted. The trajectories start to 
diverge after 2 ns. The change in trajectories indicates the 
loss of the memory of the initial conditions due to the 
additive internal noise mixed by chaotic dynamics. 
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Fig. 1  Five temporal waveforms of chaotic laser outputs when 

different noise sequences are added at t = 0. 
 

We use chaotic temporal waveforms to generate 
random binary bits. We consider two situations where one 
laser or two lasers are used. For both cases, we set a 
threshold value for each chaotic signal and sample the 
chaotic signal at the constant clock frequency of 1.7 GHz, 
as previously reported in Ref. [12]. The clock frequency is 
lower than the dominant frequency of the chaotic 
waveforms (~ 3 GHz). We convert the sampled data to a 
binary signal (0 and 1) by comparing with the set 
threshold value for each chaotic signal. The threshold 
levels are selected at the condition where the frequency of 
0 becomes the closest value to 50%. For the two-laser 
case, two binary signals are obtained from the two lasers, 
and the two binary signals are combined by a logical 
Exclusive-OR (XOR) operation to generate a single 
random bit sequence. 
 
5. Amplification of noise 
 

We consider the situation where an attacker tries to 
predict the physical bit sequences generated by chaotic 
semiconductor lasers. We assume that the attacker not 
only observes the bit sequence, but that they have a 
computational dynamical model of the laser and statistical 
model of the noise, and they are able to make a prediction 
based on the observed sequence and numerical simulation 
of the model. We consider the two following cases: 

 
Case 1: All the generated bit sequences, all the 

parameter values of the laser, and all the initial states of 
the laser are known with high precision by attackers. Note 
that a large number of initial states exist in the time-
delayed feedback loop (external cavity) and the system 
becomes very high dimensional. This is not a realistic 
assumption, but very advantageous for attackers.  

 
Case 2: All the generated bit sequences and all the 

parameter values of the laser are known by attackers, but 
initial states of the laser are unknown. This is a more 
realistic situation for attackers. 
 
5.1 Memory time 
 

Let us first consider the case 1. Figure 2(a) shows a plot 
of bit entropy against time. This is obtained with the 
following procedure. We execute the simulation of the 
dynamical equations of motion with noise added. The 
state of the laser is recorded at a particular time. We 
repeatedly re-run the simulation from that same initial 
state to obtain a set of different waveforms corresponding 
to different noise instances. We then convert each 
waveform to a binary signal by comparing with a fixed 
threshold level. Finally we compute the entropy of the set 
of binary signals as a function of time. The time-
dependent entropy is defined as: 
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where Pi(t) is the probability of the occurrence of i (i = 0 
or 1) at the time t for an ensemble of different waveforms 
with different additive noise instances. 

It can be seen that the entropy reaches 1 after about 
three nanoseconds in Fig. 2(a). This indicates that even if 
we know the state of the laser in the dynamical model to 
high precision at some time, we are unable to predict 
whether the waveform will correspond to a “1” or a “0” at 
three nanoseconds later. In other words, there is no 
information about the initial state in the bit after this time. 
We define the “memory time” of the initial conditions Tm 
as the time when the entropy reaches more than 0.9 in this 
calculation. 
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Fig. 2 (a) Bit entropy as a function of time. (b) Memory time as a 

function of noise strength. 
 

Figure 2(b) shows the memory time as a function of 
noise strength. Note that noise strength -25 dB 
corresponds to the noise level in our experiment in Ref. 
[12], as evaluated by the signal-to-noise ratio. The plot is 

a straight line and the memory time decreases as the noise 
strength is increased. Even if the laser state is exactly 
known at some time t = 0, the entropy of the 
corresponding binary signal becomes unity after memory 
time Tm. For the noise level of -25dB observed in the 
experiment, the memory time Tm corresponds to 2.4 
nanoseconds for the two-laser case. 
 
5.2 Predictability time 
 

We next consider the case 2 where the attacker cannot 
observe the analog initial state of the laser, but can only 
observe the bit sequence generated. In this situation, we 
should estimate the possible states of the laser based on 
the past bit sequence, then run our simulator forward in 
time to estimate the possible states of the laser at the time 
of the next bit. The entropy of the next bit depends on the 
ensemble of all the laser states which are consistent with 
the past bit sequence. This is a rather large computation 
for a system with large dimensions due to the time-delay. 
So instead we generate a representative ensemble in the 
following way. We start from a single state, assuming that 
we have somehow identified this state with a long bit 
sequence starting at minus infinity. We run the simulation 
with various noises, and keep a set of trajectories that 
correspond to the same bit pattern for the next M-bits. 
Now we have an ensemble of states which correspond to 
the same bit sequence in the past. We run the simulation 
forward for these states, and calculate the entropy of the 
next  bit (that is the (M+1)th bit). 

Figure 3 shows the entropy of the corresponding binary 
signal as a function of time from the M-th bit for M=5, in 
the case of bit sequences generated at 1.7 Gbps. It can be 
seen that at the time 0.05 nanoseconds (ns) later, the 
entropy has reached more than 0.9. This characteristic 
time is defined as the “predictability time” Tp. Note that Tp 
of 0.05 ns is shorter than the bit interval (0.59 ns, inverse 
of the sampling frequency of 1.7 GHz). This result 
supports unpredictability of random bit sequences from 
the attack with chaotic laser models [12]. 

Our numerical analysis supports the claim that if we 
can only observe the bit sequence (and not the internal 
analog state of the laser system itself) then even if we use 
a computational model of the chaotic dynamics, we 
cannot predict the next bit. This is because of the 
persistent uncertainty in the state of the laser, due to the 
property that the rate of the generation of entropy (due to 
amplification of noise by the chaotic dynamics) is large 
compared to the bit rate. 

The results of the numerical analysis explained above 
support the claim of unpredictability. These can be 
reproduced by anyone using the well known nonlinear 
dynamical model for this type of chaotic laser. It is 
difficult to achieve this proof experimentally, because of 
the need to repeatedly prepare the laser in the same state. 

(a) 

(b) 
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Fig. 3  Bit entropy as a function of time when only preceding bit 

sequence is known. 
 

6. Conclusion 
 

We have calculated the effect of noise amplification by 
chaotic dynamics in semiconductor lasers used to achieve 
generation of random bit sequences at the fast rate of 1.7 
gigabits per second. We have measured the memory time 
of the initial conditions defined as the time when the 
entropy reaches more than 0.9 after noise is added in the 
chaotic lasers. We found that the memory time decreases 
as the noise strength is increased. We have also measure 
the predictability time when the entropy reaches more 
than 0.9 by using an ensemble of states which correspond 
to the same bit sequence in the past bit. It is found that the 
predictability time is shorter than the interval between 
samples used to obtain bits. This result supports the claim 
that the bit sequences are unpredictable even when chaotic 
dynamical models are used for prediction. 
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