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Abstract: In this work, we present a new memristor 

based chaotic circuit, which is obtained by replacing the 

nonlinear resistor in the canonical Chua’s circuit with a 

charge-controlled memristor. This chaotic circuit uses 

only the four basic circuit elements, and has only one 

negative element in addition to the nonlinearity. The 

existence of the chaos is not only demonstrated by 

computer simulations, but also verified with Lyapunov 

exponents, bifurcation, poincaré mapping and power 

spectrum analysis. 
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1. Introduction 

 

Resistor R, capacitor C, and an inductor L are the three 

well-known basic two-terminal circuit elements. From the 

circuit theoretic point of view, the memristor (short for 

memory resistor), with memristance M, was postulated as 

a fourth fundamental element based on symmetry 

principle by Leon O. Chua in 1971 [1]. Almost 40 years 

later, Strutkov et al., a team led by R. Stanley Williams 

from the Hewlett–Packard Company claimed their 

invention of a physical memristor device together with a 

useful physical model of the memristor [2], and thereby 

cemented its place as the fourth circuit element. This 

nanometer-size solid-state two-terminal passive device 

has generated worldwide interest because of its potential 

applications [3], much research is already focused on 

them [4-8]. Since a memristor is a fundamental circuit 

element, circuit applications of memristors are also active 

topics of research [9-13].  

By definition, a memristor is said to be 

charge-controlled if the nonlinear relation between the 

charge q and the flux ϕ can be expressed as a 

single-valued function ( )qϕ ϕ=
 of the charge q.  

In this paper, we assume that the charge-controlled 

memristor is characterized by a smooth continuous cubic 

monotone-increasing nonlinearity as follows: 

             
3( )q aq bqϕ = +               (1) 

Consequently, the memristance M(q) are defined by 

        
2( )

( ) 3
d q

M q a bq
dq

ϕ= = +          (2) 

 

2. The new chaotic circuit with charge-controlled 

memristor and system equations 

 

Figure 1 shows a chaotic circuit with charge-controlled 

memristor, which is a dual circuit of the canonical Chua’s 

oscillator [9, 13] by replacing the Chua’s diode with a 

charge-controlled memristor. The charge-controlled 

memristor shown in Fig. 1 is a passive two-terminal 

electronic device described by Eq. (1).  

 
Fig. 1. Chaotic circuit with a charge-controlled memristor 
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Applying Kirchhoff’s voltage laws and current laws to 

the circuit in Fig.1, we obtain a set of four first-order 

differential equations, which define the relation among 

the four circuit variables 
1 2, , ,i i v q： 

           

( )1
1 1

2 1

2
2 2

1

d i
L v M q i

d t
d v

C i i
d t
d i

L R i v
d t

d q
i

d t

 = −

 = −

 = −


 =


           (3) 

where the φ–q characteristic curve of the 

charge-controlled memristor is given by Eq. (1) 

and
( )

( )
d w

M w
dw

ϕ= . 

By let in 1x i= , y v= , 2z i= , 1C = , 

w q= ,
1

1m L= ,
2

1n L= ,
2

Rk L= , and defining the 

nonlinear functions ( )wϕ and ( )M w  as 

              3( )w a w b wϕ = +           (4) 

2( )
( ) 3

d w
M w w bw

dw

ϕ= = +      (5) 

State equations of (3) can be written in dimensionless 

form with a time scale factor k as follows: 

    

( ( ) )
dx

m y M w x
dt
dy

z x
dt
dz

kz ny
dt
dw

x
dt

 = −

 = −

 = −


 =


               (6) 

where m, k, n > 0.  

Let 3 34, 1, 0.59 10 , 0.02 10m n a b− −= = = − × = × , 

and k=0.83. For initial conditions 10(0, 10 , 0, 0),− the 

system(6) is chaotic with Lyapunov exponents 

1 2 3 40.1506, 0, 0.0003, 8.7096λ λ λ λ= = = − = − , and the 

Lyapunov dimension is dL = 3.0179, the corresponding 

attractor is depicted in Fig.5. 
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      Fig. 2 Phase portraits of the chaotic system (6) 

 

3. Bifurcation analysis of the new system (6) 

 

The spectrum of Lyapunov exponents on the (k-λ) 

plane is obtained as shown in Fig.3, while the 

corresponding bifurcation diagram of state x with respect 

to k is given in Fig.4. 

    It can be observed that the bifurcation diagram well 

coincides with the spectrum of the Lyapunov exponents. 

As k increases, system(4) undergoes the following route: 

1) 0.5＜ k≤0.6, λ1=0, λ2, λ3, λ4＜0; system(6) is 

periodic (Fig.5(a)). 

2) 0.6＜k≤0.715, λ1=λ2=0, λ3, λ4＜0; system(6) is 

quasi-periodic(Fig.5(b)) . 

3) 0.715＜k≤0.76, λ1>0, λ2=0, λ3, λ4＜0; system(6) is 

chaotic (Fig.5(c)). 

4) 0.76＜k≤0.775, λ1=λ2=0, λ3, λ4＜0; system(6) is 

quasi-periodic. 

5) 0.775＜k≤0.84, λ1>0, λ2=0, λ3, λ4＜0; system(6) is 

chaotic. 
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Fig.3 The Lyapunov exponents versus k in the (k-λ1,2,3,4) 

plane 

 

Fig. 4   Bifurcation diagram for increasing k 
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Fig.5   Phase portraits of system (6) in: (i) y-w plane 

and (ii) z-w plane with different k: (a) period orbit, 

k=0.55; (b) quasi-period orbit, k=0.65; (c) chaotic 

attraction, k=0.745; (d) chaotic attraction, k=0.83. 

 

4. Poincaréééé mapping and power spectrum analysis. 

 

On the poincaré section, when it has only one point or 

few dispersed points, the motion is periodic; when it has a 

closed curve, the motion is quasi-periodic; when it has a 

lot of concentrated points, the motion is chaotic. 

The poincaré mapping of system (6) with different k is 

obtained as shown in Fig.6. 
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             (b) quasi-period orbit 
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               (c) chaotic attraction      

Fig. 6 Poincaré mapping of system (6) in: y-z plane 

with different k: (a) period orbit, k=0.55; (b) quasi-period 

orbit, k=0.65; (c) chaotic attraction, k=0.745. 

The power spectrum of system (6) with different k is 

obtained as shown in Fig.7. 
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(a) period orbit k=0.55 
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(b) quasi-period orbit k=0.71 
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(c) chaotic attraction k=0.795 

Fig. 7 Signal spectrum of system (6) 

 

7. Conclusions 

 

In this paper, a memristor oscillator, which is extended 

from a Chua’s oscillator by replacing the Chua’s diode 

with a charge-controlled memristor, is presented and 

studied. This chaotic circuit uses only the four basic 

circuit elements, and has only one negative element in 

addition to the nonlinearity. The resulting chaotic system 

is not only demonstrated by computer simulations but 

also verified with Lyapunov exponents, bifurcation, 

poincaré mapping and power spectrum analysis. 
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