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Abstract—We present various bursting wave forms that are
obtain from a simple model of Hodgkin-Huxley type. The
model is a typical example whose characteristics can be discussed
through a concept of potential with active areas. A potential func-
tion is able to provide a global landscape for dynamics of a model,
and the dynamics are explained in relation to the disposition of
the active area on the potential. We obtain the potential functions
and the active areas for a Hindmarsh-Rose model,a Morris-Lecar
system, and a Hodgkin-Huxley system, and hence we are able to
discuss the common properties among these models based on the
concept of potential with active areas. Furthermore, we are able
to understand intuitively a bifurcation of an interconnected van
der pol system by using the potential, so that the new concept is
very useful to describe the dynamics of interconnected systems.

1. Introduction

We have proposed the Inverse function Delayed
model(ID model) as one of neural networks[1]. This model
has physiological well-grounded negative resistance in its
dynamics, we have reported that this model substantially
grows in performance in various intelligent information
processings[2][3]. In addition, we consider that the burst
firing oscillation has prospects of capabilities of effective
tool for information processings consequently. We pro-
posed Burst ID model of Hodgkin-Huxley(H-H) type that
has burst firing oscillation characteristics[4], we have pro-
posed that we are able to explain the characteristics and
various wave forms as a motion of particulars on the poten-
tial with the active area. The potential function gives global
dynamic characteristics, and this dynamics are explained in
relation to the disposition of the active area on the potential.
This property is applied to the other neuron models includ-
ing chaotic dynamics, and we obtain the potential function
and active areas for Hindmarsh-Rose model, Morris-Lecar
model and so on[5]. In this paper, we apply this concept to
van der pol model and analyze the interconnection system
with this model by using the potential, expecting that such
a new concept is also very useful to describe the dynamics
of interconnected systems.

2. Potential and Active areas of Burst Inverse function
Delayed model

We have made the ID model burst to add the third vari-
able z corresponded to variable m in H-H model. This
model is expressed as the following equations

τx
dx
dt
= u+ γz− g(x) (1)

τu
du
dt
=Wx− u (2)

τz
dz
dt
= −z+ z∞(x) +

1
γ
θ, (3)

whereτu >> τz ≥ τx,

g(x) = 1/8log(x/(1− x)) − 2(x− 0.5) (4)

z∞(x) = tanh{4(x− 0.7)}. (5)

Equations (1), (2) and (3) can be transformed into the Eq.
(6) of one variable by deletingz andu

d3x
dt3
+ (η(x) +

1
τu

)
d2x
dt
+ {dη(x)

dx
dx
dt
+

1
τxτz

(
dg(x)

dx
− γdz∞(x)

dx
− τz
τu

W) +
1
τu
η(x)}dx

dt

= F(x, θ)

= −∂U(x, θ)
∂x

, (6)

where η(x) = 1
τx

dg(x)
dx +

1
τz

and U(x, θ) is a kind of the
potential. The equilibrium pointx0 depends on the ex-
ternal inputθ, and it is calculated by using the equation
of ∂U(x, θ)/∂x = 0. We have obtained the characteristic
equation and tried to analyze the stability at neighborhood
of a equilibrium point according to Hurwitz’s theorem. In
this way, we obtain Eqs. (7)～(11), in case which these
functions are positive, the system stays in a stable state.
Equation (7) describes the curvature factor of the potential,
therefore the system is unstable if it is a negative value. In
other words, we identify areas that Eqs.(8)～(11) is nega-
tive as the active areas.

b0(x) =
∂2U(x0, θ)
∂x2

(7)
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Figure 1: Burst ID active areas, potential and waveform

b1(x) =
1
τxτz
{dg(x0)

dx
− γdz∞(x0)

dx
− τz
τu

W} + η(x0)
τu

(8)

b2(x0) = η(x0) +
1
τu

(9)

B1(x0) = b2(x0)b1(x0) − b0(x0) (10)

B2(x0) = b0(x0)B1(x0). (11)

Figure 1 shows the differentiation of the potential function
∂U/∂t, active areas,b0(x), b1(x), b2(x), B1(x) andB2(x),
the output does not diverge, because potential function is
reentrant and active areas are localized.b1(x) active area
andb2(x) have overlaps of each active areas partly, the for-
mer causes the output to oscillate slowly, in other hand, the
later creates fast oscillations. Furthermore, chaotic dynam-
ics are observed fromθ = 3.0 to θ = 4.0.

3. van der Pol model

3.1. Basic equations

The van der Pol system is expressed as following equa-
tion

dx2

dt2
− q(1− x2)

dx
dt
= −x. (12)

We rewrite this equation Eq.(13), because we can set the
negative resistance region arbitrarily considering the exter-
nal input.

d2x
dt2
+ ϵ{(x− α)2 − β}dx

dt
=Wx+ ωi j y+ θ. (13)

Equation (13) can be transformed into the following equa-
tion of two variables.

dx
dt
= u− ϵ(1

3
x3 − αx2 − βx) (14)

du
dt
=Wx+ ωi j + θ. (15)

Figure 2: Time series of the outputx(t) andy(t) with W =
−1.0, ω = −0.5, α=0, β=0.49 andϵ=1.0. In cases which
the active areas are symmetrical to theY axis(Fig.4), these
units show behavior of synchronized oscillation in phase or
opposite phase depended on the initial values.

Where x(y), u, W, θ and,ωi j are the output of the unit,
the internal state, the self-connection, the baias, and the
connection weight from the unitj, thus the range of the
negative resistance region is|x− α| <

√
β.

We have interconnected two units expressed by Eq.(13),
however the interconnection is equal(wi j = w ji = w) and
out of consideration of the biasθ.

d2x
dt2
+ ϵ{(x− α)2 − β}dx

dt
=Wx+ ωy

d2y
dt2
+ ϵ{(y− α)2 − β}dy

dt
=Wy+ ωx (16)

In case which units are interconnected, the outputx(t), y(t)
are shown in Fig. 2. Equation (16) can be transformed into
the one-variable equation

d4x
dt4
+ b3(ẍ, ẋ, x)

d3x
dt3
+ b2(ẍ, ẋ, x)

d2x
dt2
+ b1(ẋ, x)

dx
dt

= −(W2 − ω2)x

= −F(x)

= −∂U(x)
∂x
, (17)

thus we can obtain the potential function

U(x) =
1
2

(W2 − ω2)x2. (18)

This potential function becomes the convex function ifW <
ω, and we obtain the divergence of the outputx(Fig. 3). If
W > ω, the potential function forms the concave function
and we can avoid the divergence. There are active areas, so
this system spontaneously oscillates in continuity, and we
can make sure it by numerical experimentations.
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Figure 3: Time series of the output x(t) and y(t) withW =
−1.0, ω = −1.1, α=0, β=0.49,ϵ=1. The potential function
is the convex function, so the output diverge for infinity.

Figure 4: The frequency characteristics of inphase and
antiphase oscillations, whenα = 0.0, β = 0.49, ϵ =
1.0 and W= −1.0.

3.2. characteristics of interconnected van der Pol mod-
els for α = 0

In this subsection, we show some characteristics of the
interconnected van der Pol models, the amplitude and fre-
quency. Whenα = 0, the disposition of active areas is
symmetrical, we can obtain two different solution orbits,
inphase and antiphase oscillation. If connection value is
week, the oscillation state is stable at one side. When the
connection value is positive, the in-phase oscillation is not
stable. Reverse case, the antiphase oscillation is unstable,
so, these characteristics is not continuous value nearby the
point of origin. These oscillations have the different char-
acteristic features. Figure 4 shows the frequency charac-
teristics with changing the connection valueω. The fre-
quency of antiphase oscillation increases with increasing
connection value, in contrast, the frequency of in-phase os-
cillation decreases.
The characteristics of oscillation amplitude is showed in

Fig.5. The amplitude has a value about 1.4. When the ab-
solute values of amplitude is about 0.7, the amplitude value

Figure 5: The amplitude characteristics of inphase and an-
tiphase oscillations,whenα = 0.0, β = 0.49, ϵ = 1.0 and
W = −1.0.

take an extreme value.

3.3. Active areas

The equilibrium pointx0 is obtained according to the po-
tential function, we also obtain the following equations for
Burst ID model,

b0(x) =W2 − ω2 (19)

b1(x) = −W{A(x) +C(x)} (20)

b2(x) = −2W+ A(x)C(x) (21)

b3(x) = {A(x) +C(x)} (22)

B1(x) = b2(x)b3(x) − b1(x) (23)

B2(x) = B1(x)b1(x) − b3(x)2b0(x), (24)

where,A(x) = ϵ{(x−α)2−β},C(x) = ϵ{( W
ω

x+α)2−β}. If all
these equations are positive, the system is in a stable state.
In contrast, if just one equation is negative, it is unstable.
We consider that, inside of the active areas, the systems are
subjected to force and these wave forms show changes.

3.4. Parameter dependency of active areas

We are able to set up the active areas with the control
parameters. The active areas are symmetrical to theY
axis, if α = 0. Figure 6 shows the width ofb1(x) active
area(α = 0.0, β = 0.49, ϵ = 1.0 andW = −1.0) as a func-
tion of parameterω. b1(x) active area grows wider with
increasingω. This function represents the resistance of a
moving particle in the potential, we consider that this ac-
tive area controls the frequency of oscillations.b1(x) is
equal function withb3(x), if self-connectionW = −1 and
each parameters is the same value, and henseb3(x) active
area has the similar characteristics tob1(x).
Figure (7) shows the width ofb2(x) active area as a func-
tion of ω. b2(x) active area disappear with decreasingω.
b2(x) function represents the mass of a moving particle,
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Figure 6: Dependency of width ofb1(x) active area on the
parameterω with α = 0.0, β = 0.49,ϵ = 1.0, W = −1.0

Figure 7: Dependency of width ofb2(x) active area on the
parameterω with α = 0.0, β = 0.49,ϵ = 1.0, W = −1.0

and hence this function may have much effect on wave
forms. When a moving particle gets out from active ar-
eas and pass through an extremum ofb2(x) function, the
movement becomes slowly(Fig.8).B1(x) andB2(x) consist
of the product ofb0(x),b1(x), b2(x) andb3(x), consequently
these functions have complex forms.

4. Conclusions

In this paper we discussed the universality of the burst
dynamics with the concept of a potential function and ac-
tive areas. This concept is applied to the mutual coupling
systems, so we have analyzed parameter dependency of ac-
tive areas and the relativity of wave forms to the potential
function and the active areas, we expect the concept to be
helpful for understanding the dynamics of these systems.
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