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Abstract–In this paper three linear controllers are 
designed for completely synchronizing a new hyperchaotic 
system. The first one is a linear feedback controller, which 
uses only one term to synchronize the hyperchaotic system. 
Then by using Backstepping scheme and Lyapunov 
stability theory, the second controller is designed, which 
makes the hyperchaotic system quickly synchronized. The 
third controller is proposed using direct design method, 
which needs no deducing the Lyapunov functions in design 
process. Finally simulation results are presented to 
demonstrate the effectiveness of the three proposed 
controllers. The new hyperchaotic system has only one 
nonlinear term and the proposed controllers are all linear, 
so they especially fit for secure communication. All the 
linear controllers proposed in this paper are easy to be 
realized in actual project applications. 
 
1. Introduction 

 
Chaos is very interesting nonlinear phenomenon and 

has applications in many areas such as biology, economics, 
signal generator design, secure communication, and so on. 
Chaotic synchronization has been a hot topic since the 
pioneering work of Pecora and Carroll [1], variety of 
methods and techniques have been proposed for 
controlling chaotic systems. 

In recent years, many synchronization methods have 
been developed, such as OGY control [1], feedback 
control [2], coupled control [3], adaptive control [4], H ∞  
control [5] and many others. In these synchronization 
methods, Backstepping scheme [6] is often applied to 
analyze the stability of error systems, which reduces the 
difficulty of analysis. In this paper, Backstepping scheme 
is also used in theoretical analysis. However most of these 
synchronization methods are nonlinear controllers, so they 
are too complicated to be applied in actual projects. In this 
paper, three linear controllers are designed for a new 
hyperchaotic system. 

On the other hand, a lot of new chaotic systems are 
found in the last three decades. By reconstructing some 
famous chaotic systems, researchers obtained some 
hyperchaotic systems such as hyperchaotic Lorenz system 
[8], hyperchaotic Chen system [9], hyperchaotic Liu 
system [10], hyperchaotic Qi system [11] and so on. In ref. 
[12], Zhou et al found a new four-dimensional 
hyperchaotic system. This system has only one nonlinear 
term, which has the same simple structures as 

hyperchaotic Rössler system [13,14]. The simple structure 
makes it fit for secure communication. 

In this paper, three synchronization controllers are 
designed for this new hyperchaotic system [12]. The first 
controller is a linear feedback controller, which has very 
simply structure with only one term. Using Backstepping 
scheme and Lypanov stability theory, the second one is 
designed. It is different from traditional linear feedback 
method and linear coupled method. Quick synchronization 
speed can be obtained using this method. And then the 
third one is obtained using direct design method, which is 
obtained without deducing Lyapunov functions. Finally 
simulation results are presented to demonstrate the 
effectiveness of the three proposed controllers. 

 
2. A new hyperchaotic system 
 

In 2009, Zhou P. et al constructed a new four-
dimensional hyperchaotic system [12]. The new system is 
similar to the famous Rössler system. They have only one 
nonlinear term. The autonomous differential equations are 
described by: 
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The simple structure makes it fit for secure 
communication and project application. System (1) has 
three equilibrium points: 
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where 12 /p a= . 

1 2 3 40,λ λ λ λ=  0 > > >  and system (1) is in periodic 
state when 0 0.27a< ≤ . The Lyapunov exponents are (0, 
-0.12728, -0.15564, -0.15674) when a=0.1. 

1 2 3 40, 0λ λ λ λ= =  < 0, <  and system (1) is in simulant 
periodic state when 0.27 0.45a< ≤ . The Lyapunov 
exponents are (0, 0, -0.02432, -0.4763) when a=0.4. 

1 2 3 40, 0, 0λ λ λ λ> =  < 0, <  and system (1) is in chaotic 
state when 0.45 0.59a< ≤ . The Lyapunov exponents are 
(0.02066, 0, -0.02865, -0.49696) when a=0.53. 

And when 0.59 0.69a< ≤ , 1 2 3 40, 0, 0λ λ λ λ> >  = 0, <  
and system (1) is in hyperchaotic periodic state. The 
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Lyapunov exponents are (0.1191, 0.04961, 0, -0.85222) 
when a=0.66. 

Fig.1 to Fig.4 show the periodic, simulant periodic, 
chaotic and hyperchaotic states of system (1). 

The complex signals in hyperchaotic systems enhance 
the safety of chaotic secure communication and chaotic 
information encryption. So in this paper, system (1) is 
considered as the drive system when 0.59 0.69a< ≤ . 
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Fig.1 The attractors plot when a=0.1 
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Fig.2 The attractors plot when a=0.4 
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Fig.3 The attractors plot when a=0.53 
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Fig.4 The attractors plot when a=0.66 

 
3. Linear synchronization methods 
3.1. Linear feedback control 

 
Linear feedback method is easy to be realized in actual 

project applications, so this method is often used to 
control or synchronize chaotic systems [15,16].  

Choose the parameter a in system (1) as 
0.59 0.69a< ≤  and the error formats of complete 
synchronization as ( 1 ~ 4)i i ie y x i= −  = . Considering 
system (1) as the drive system and using traditional linear 
feedback scheme, the corresponding response system is 
described by: 
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where i i iu k e= − and 0( 1 ~ 4)ik i> = .  
Using the similar technique as in Ref. [2], we find that 

only controller 1u  is enough to completely synchronize 
system (1) and system (2). So the simplified controller is 
designed as: 
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Simulation results in next section will show the 
effectiveness of controller (3). 

 
3.2. Linear method using Backstepping scheme 

 
In this part we will design a new linear synchronization 

controller for hyperchaotic system (1). This controller is 
different from normal linear feedback or linear coupled 
controllers. Backstepping scheme is adopted to design the 
controller and to analyze the stability of error systems. 
This method reduces the design difficulty for controlling 
hyperchaotic systems. This method can be widely used in 
other hyperchaotic systems. 

Also consider system (1) as drive system and systems 
(2) as response system. So the error systems are: 
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Deeply analyzing the structure of error system (4), there 
are only two nonlinear terms in 2e& . In order to design a 
linear controller for error system (4), Backstepping 
scheme and Lyapunov stability theory are adopted. The 
deduction sequences are:  

1 2 3 4e e e e→ → →  
If 4e  is gradually stable, the other error systems are all 

gradually stable in turn. 
Step 1: Set: 1 1w e= , so we get: 

1 1 1 2 11.2w e ae e u= = − +& &  
Given Lyapunov function is 2

1 1 / 2V w= , we get: 

1 1 1 1 1 2 1( 1.2 )V w w e ae e u= = − +& &                                    (5) 
If 1u  is designed as 1 1 1u k e  = − and 1k a≥ , the formula 

(5) is obtained as: 
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2
1 1 1 1 2( ) 1.2V k a e e e= − − −&                                              (6) 

So 1 1( )wα  is considered as virtual control to 2e . When 

1 1 2( ) 0w eα = = , 2
1 1 1( ) 0V k a e= − − ≤& . So 1e  is gradually 

stable. 
Step 2: Set: 2 2w e= , so we get: 

2 2
2 2 1 2 3 2 3 20.1 0.1w e e y y x x u= = − + +& &  

Given Lyapunov function is 2
2 1 2 / 2V V w= + , we get: 

2 2
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If 2u  is designed as 2 1u e  = − , the formula (7) is 
obtained as: 
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So 2 2( )wα  is considered as virtual control to 3e . When 

2 2 3( ) 0w eα = = , 2 2
2 1 3 20.1 0V V y e= − ≤& & . So 1 2,e e  are 

gradually stable. 
Step 3: Set: 3 3w e= , so we get: 

3 3 2 3 4 31.2 5w e e e e u= = − − − +& & .  
Given Lyapunov function is 2

3 2 3 / 2V V w= + , we get: 

3 2 3 3 2 3 2 3 4 3( 1.2 5 )V V w w V e e e e u= + = + − − − +& & &&            (9) 
If 3u  is designed as 3 2u e= , the formula (9) is obtained 

as: 
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So 3 3( )wα  is considered as virtual control to 4e . When 

3 3 4( ) 0w eα = = , 2
3 2 31.2 0V V e= − ≤& & . So 1 2,e e and 3e  are 

gradually stable. 
Step 4: Set: 4 4w e= , so we get: 

4 4 3 4 40.8w e e e u= = + +& & .  
Given Lyapunov function is 2

4 3 4 / 2V V w= + , we get: 

4 3 4 4 3 4 3 4 4( 0.8 )V V w w V e e e u= + = + + +& & &&                    (11) 
If 4u  is designed as 4 3 4 4u e k e= − −  and 4 0.8k ≥ , the 

formula (11) is obtained as: 
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So from formula (6), (8), (10) and (12), it is easy to find 
that ( 1 ~ 4)ie i =  are all gradually stable. 

That is to say, when linear control is designed as: 
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system (1) and system (2) will achieve complete 

synchronization. 
Linear controller (13) owns simple structure, so it is 

very suitable to be applied in actual projects. 
 

3.3. Linear method using direct design method 
 
In last part we design another linear controller using 

Backstepping scheme and Lyapunov stability theory. In 
this part the third linear controller will be proposed using 
the direct design method without deducing Lyapunov 
functions. 

To error system (4), system (1) and system (2) will be 
completely synchronized if lim 0it

e
→∞

= . 

Error system (4) can be constructed as the following: 
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                                       (14) 
The linear controller is designed as: 
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Then the error system is constructed as: 
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[ ]1 2 3 4: ( ) ( , )TA t e e e e O e t =       +                        (16)  
where ( )A t  is linear system matrix, ( , )O e t  is nonlinear 
term. 

According to the the stability theory of linear system 
and lemma in Ref. [17], 0),0( =tO  and 

0

( , )
lim 0
x

O x t
x→

=  to all t . So the error system (16) is 

gradually stable if all the real parts of eigenvalues in 
matrix ( )A t  are negative. 
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From formula (17), we get: 
1 1 2 2 3,4, 0.2 2a k k iλ λ λ= −  = − , = − ±                    (18) 

Obviously when 1k a>  and 2 0k > , all the real parts of 
eigenvalues in matrix '( )A e  are negative. So system (1) 
and system (2) will receive complete synchronization 
under controller (15). 

 
4. Simulation researches 

 
Firstly, considering hyperchaotic system (1) as the drive 

system and system (2) as the response system, the 
controller (3) is used in simulations. The system 
parameters are set as 10.66, 5a k=  =  and the initial 
values of two systems are set as (1,2,2,1) and (30,-40,50,-
60).  

In simulations, the step value is 0.05. We plot the 
curves of complete synchronization error. Fig.5 is the 
chaotic attractors of the two chaotic systems. Fig.6 is the 
plot curves of the error systems. The two plots show that 
the complete synchronization is received between system 
(1) and (2). In about 20 seconds, all the error systems are 
stable to 0. 
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Fig. 5  The attractors of two systems under the linear controller (3) 
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Fig. 6 The error plot under the linear controller (3) 
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Fig. 7  The error plot under the linear controller (13) 

 
Secondly, controller (13) is used to synchronize system 

(1) and system (2). 1 4 5k k= =  and other parameters are 
same with the first simulation. Fig. 7 is the plot curves of 
the error systems. Compare fig.6 with fig.7, controller (13) 
quickens the synchronization speed and all the two 
systems are synchronized in about 2 seconds. 

Lastly, controller (15) is used to synchronize system (1) 
and system (2). 1 5k =  and other parameters are same 
with the first simulation. Fig. 8 is the plot curves of the 
error systems. All the two systems are synchronized in 
about 13 seconds. 
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Fig. 8 The error plot under the linear controller (15) 

 
From the three simulation results, they obviously show 

that the controller (13) has the fastest synchronization 
speed for it adds control terms in every sub systems. 

 
5. Conclusions 

 
In this paper, synchronization control methods of a 

new hyperchaotic system are proposed. The new 
hyperchaotic system has only one nonlinear term, so it fits 
for secure communication. The first controller is based on 
linear feedback method, which has the simplest structure. 
The second controller is designed using Backstepping 
scheme and Lyaounov stability theory, which obtains the 
fastest synchronization speed. The third controller is 
proposed using direct design method without deducing 
Lyapunov functions, which simplifies the academic 
analysis of error systems. The simulations show the 
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hyperchaotic systems are completely synchronized via the 
three methods. 

The idea in this paper can be used in other hyperchaotic 
systems, which is different from traditional feedback 
methods and coupled control methods. Our Future works 
regarding this topic include the investigation of some 
other types of synchronization for this class of 
hyperchaotic systems, including some uncertain 
parameters. 
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