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Abstract—We study both theoretically and experimen-
tally the onset of broadband sub-THz chaos in the mini-
band semiconductor superlattice. We consider the effects
of a external resonator on the high-frequency dynamics of
electrons in electronic device exhibiting negative differen-
tial conductance. The transition to the broadband chaos,
which is confirmed by calculation of Lyapunov exponents,
is associated with intermittency scenario. The theoretical
findings are confirmed by experimental measurements of a
GaAs/AlAs miniband semiconductor superlattice coupled
to a microstripe resonator. Our results provide a generic ap-
proach for developing modern chaos-based high-frequency
technologies including broadband chaotic wireless com-
munication and for super-fast random-number generation.

1. Introduction

Semiconductor superlattices (SLs) are nanostructures
formed by several alternating layers of different semicon-
ductor materials [1, 2]. This periodic structure leads to the
formation of the energy minibands that enables electrons,
in the presence of an electric field, to demonstrate a num-
ber of interesting quantum-mechanical phenomena, such as
formation of Wannier-Stark ladders, sequential and reso-
nant tunnelling, Bragg reflections, Bloch oscillations, etc.
Due to the high mobility of miniband electrons and very
high frequency of Bloch and charge-domain oscillations,
SLs are considered as the perspective active elements for
sub-THz and THz electronic devices [1, 3, 4, 5, 6, 7].

In this report we consider the chaotic subteraherz gener-
ation in the SL coupled to a external resonator. The external
resonant systems in microwave electronics and telecom-
munication systems are widely used for tuning and en-
hancing the characteristics of the high-frequency genera-
tion. Besides, coupling of generating device to an external
electrodynamic structure sometime leads to emergence of
new unexpected phenomena, including bistability [8], self-
pulsating [9], and appearance of chaos [10], unfeasible in
the isolated devices. Let us note, that possibility to gen-

erate sub-THz frequencies (up to 10–200 GHz) chaos in
SLs was previously demonstrated both in theory and ex-
periment [11, 12]. These findings have opened wide per-
spectives for using SL generators in a number of key mod-
ern technologies including fast random-number generation
[12] and chaos-based communication systems [13, 14]. In
the present work we study the dynamical mechanisms re-
sponsible for onset of chaos in SL connected to a resonator,
and to investigate how the frequency band of chaotic out-
put depend on the voltage applied to the system. In par-
ticular, we demonstrate that relative spectral band width of
generated chaotic voltage oscillations is very sensitive to
applied voltage, and can reach values more than 25% in
high-frequency range. The reported results will be useful,
e.g. for development and design of high-frequency chaos
generators that use SL devices as key elements [12, 15]

2. Model under study and numerical results

We consider a SL interacting with a resonator. We as-
sume that only one EM field mode is excited in the res-
onator. This mode is characterized by the eigenfrequency,
fQ, and quality factor, Q. In this case the resonator can be
represented by the equivalent RLC-circuit and described
by the non-stationary Kirchhoff equations (see details in
Ref. [10]). The SL serves as a generator of electric current,
I, controlled by a voltage, Vsl(t), dropped across SL, which
includes both the DC supply voltage, V0, and the AC volt-
age, V1(t), generated by the RLC-circuit. To calculate the
charge dynamics in the SL, and thus obtain the current-
voltage, I(Vsl), characteristics, we numerically solve the
discrete current continuity and Poisson equations. The de-
scription of used mathematical model can be found in [10].

The current through the SL is either constant or oscil-
lates depending on the voltage, V0, applied to the circuit. If
the SL is decoupled from the resonator, its current-voltage
characteristic, I(Vsl), is of the Esaki-Tsu type [1] and the
oscillations are always periodic. However, if the resonator
is coupled to the SL, the behavior changes greatly.
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Figure 1: (a) I(V0) calculated for a SL coupled to a res-
onator with fQ = 13.81 GHz and Q = 150. (b) The bifur-
cation diagram of V1(t) vs. V0

In the coupled regime, the I(Vsl)–characteristic is shown
in Fig. 1(a). This dependence has a similar form to the
Esaki-Tsu curve. For low voltages, it is ohmic. There-
after, the current tends to decrease with increasing V0 due
to the onset of Bloch oscillations. However, for V0 > Vcrit

there is a series of peaks in I(V0), which do not occur in the
absence of the resonator. These peaks correspond to the
transitions between different periodic and chaotic dynami-
cal regimes. To illustrate this, in Fig. 1(b) we superimpose
a bifurcation diagram in which each point shows the local
maximum value of V1(t) obtained for each V0 value. Fig. 1
reveals that each peak in the I(V0) curve corresponds to a
transition between different types of dynamics (shown by
arrows in Fig. 1) in the bifurcation diagram. With increas-
ing V0, the dynamics changes first from a steady state so-
lution to periodic oscillations. Thereafter, increasing V0 in-
duces multiple transitions between periodic and aperiodic
oscillations, with each transition corresponding to a peak
in the I(V0) curve. For example, when V0 ≈ 0.5 V and
V0 ≈ 0.83 V, we find peaks in the I(V0) curve and a transi-
tion between periodic and chaotic dynamics.

Note, the SL demonstrates a transition to chaos through
intermittency with increase of the DC voltage, V0. For
V0 < 510.69 mV (before the transition to chaos) periodical
regime is observed. Increasing the supply voltage (V0 >
510.69 mV) leads to a significant change in the dynamics
of the system. The dynamics of the V1–oscillations fea-
tures time intervals of the periodic motion (laminar phases)
persistently and intermittently interrupted by sudden non-
regular phases of oscillations (turbulent phases). If we fur-
ther increase the supply voltage (V0 = 510.75 mV), fast
growth of number of turbulent phases is observed. De-
scribed behavior allows us to suppose that transition to
chaos goes through intermittency, where the observation
voltage difference (V0 − V0crit) being a criticality param-
eter. For the chosen set of the parameters we estimate
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Figure 2: Time series of voltage V1(t) in resonator (a)
and spatio-temporal distributions of charge n(x, t) in SL il-
lustrated domain transport (b) for the bias voltage V0 =

510.75 mV. Turbulent phase is marked by grey

V0crit = 510.69 mV. To get deeper insight in intermittent
dynamics observed, we investigate how the mean length of
laminar phase ⟨τ⟩ changes with increase of voltage V0 and
shown that this dependence is close to the power law with
exponent −0.5 ⟨τ⟩ = α(V0 − V0crit)−0.5, which confirms the
development of type–I intermittency [17].

To understand the physical processes leading to the in-
termittency chaotic behaviour we analyse time realisation
of V1(t) (Fig. 2 (a)) together with the corresponding spatio-
temporal pattern of charge density ρ(t, x) [Fig. 2 (b)] in SL.
The n(t, x)–value is presented by a color scale in the units
of the doping density nD. Figure 2 reveals that the laminar
phases of V1(t) are characterised by regular behaviour of
high-density charge domains travelling along the SL. Each
domain is generated, when the values of V1 achieves mini-
mum. This time moment corresponds to the maximal value
of Vsl =V0 − V1, which triggers domain formation, and
while a domain propagates along the SL, no new domains
can be generated. Note, that the decoupled SL and the res-
onator have different characteristic time scales. However,
for small V0, the interaction of the resonator and the SL
coordinates oscillations of I(t) and the resonator response
V1(t). Growth of V0 leads to increase of the amplitude of
I(t), which excites the resonator. Therefore, the response of
resonator V1(t) becomes more powerful. Occasionally, in-
teraction of the SL and the resonator produces a phase slip
between I(t) and V1(t), which leads to local decrease of V1
[arrow (1) in Fig. 2(a)], and thus growth of Vsl. Eventu-
ally, raising Vsl exceeds the threshold value, and launches
an additional domain [arrow (2) in Fig. 2(b)], which im-
poses disorder in the queue of domains. This causes fur-
ther perturbations in I(t) forming a turbulent phase in V1(t).
A slight increase of V0 makes the phase slips more often,
which develops the chaos.

3. Experimental results

To verify our theoretical predictions, we performed ex-
perimental measurements on a SL with parameters cor-
responding to those of our model. The SL was grown
by molecular beam epitaxy on a (100)-oriented n-doped
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Figure 3: The numerically (a-c) and experimentally (d-
f ) obtained power spectra for the SL coupled to two res-
onators with V0 = (a) 0.42 V, (b) 0.43 V, (c) 0.44 V; (d)
0.34 V, (e) 0.35 V, (f ) 0.355 V.

GaAs substrate. It comprises 15 unit cells, which are sep-
arated from two heavily n-doped GaAs contacts by Si-
doped GaAs layers of width 50 nm and doping density
1 × 1023 m−3. Each unit cell, of width d and Si doped at
3×1022 m−3, is formed by a 1 nm thick AlAs barrier and a 7
nm wide GaAs quantum well with 0.8 InAs monolayers at
the center of each QW. The InAs layer facilitates the direct
injection of electrons into the lowest energy miniband and
also creates a large enough minigap to prevent intermini-
band tunneling. For electrical measurements, the SL was
processed into circular mesa structures of diameter 20 µm
with ohmic contacts to the substrate and top cap layer.

The SL was connected to an external high-frequency
strip line resonator with a resonant frequency fQ2 =

2.38 GHz. Electrodynamic simulations of the SL sample
and our direct measurements showed that the contact bond-
ing acts like the parasitic resonator with a resonant fre-
quency of fQ1 = 0.87 GHz.

Without the external resonator (when only the parasitic
resonator is present), our measurements reveal periodic
V1(t) oscillations with a frequency close to the resonant fre-
quency of the parasitic resonator [16]. However, when the
external resonator is connected, the results reveal a tran-
sition to chaos, which agrees qualitatively well with our
theoretical predictions, see Fig. 3(d–f ) obtained for the sys-
tem with two coupled resonators [10]. As V0 increases, the
V1(t) oscillations and their spectra evolve in a way that re-
veals the emergence of chaos through the break down of
quasiperiodic motion.

The transition from regular oscillations [Fig. 3(d)],
through quasiperiodic [Fig. 3(e)], to chaos [Fig. 3(f )]
demonstrates experimentally that a linear resonator can
induce chaos in a non-linear system. The difference in
the frequencies of the experimental and theoretical spectra
might be explained by the fact that all experimental mea-
surements were performed at room temperature, but to sim-
plify the model in the numerical simulation T = 4.2 K. The
resonator imposes a new oscillatory timescale in the sys-
tem, thus inducing quasiperiodic current oscillations. Un-
der certain conditions, when the nonlinear mixing of os-
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Figure 4: Power spectra for (a) V0 = 830 mV; and (b) V0 =

863 mV for fQ = 13.81 GHz and Q = 150
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Figure 5: Bandwidth (in GHz) vs. the bias voltage V0

cillations with different time scales is strong enough, the
quasiperiodic motion loses its stability [17], which leads to
the appearance of chaos in the system.

4. Broadband sub-THz generation

To gain further insight into chaotic regimes realizing in
the SL we consider the wide area of chaotic dynamics, lo-
cated at high supply voltage V0 > 840 mV. Note, this re-
gion of chaos is characterised by more powerful oscilla-
tions of V1(t), and has much less prominent periodic win-
dows, which alternates with chaos with variation of V0.

The evolution of the spectrum of the Lyapunov expo-
nents corresponding to this transition confirms the presence
of chaotic dynamics. We have analyzed the dependencies
of four largest Lyapunov exponents Λi upon V0 calculated
by method discussed in [18]. For V0 < 841 mV the largest
Lyapunov exponent is Λ1 = 0, whereas Λ2−4 < 0. Such
spectrum of the Lyapunov exponent evidences generation
of periodic current and voltage oscillations. With increase
of V0 exponent Λ1 becomes positive, Λ2 grows to be zero,
and Λ3−4 remain negative. Appearance of a positive Lya-
punov exponent corresponds to the chaos onset.

In order to study the spectral characteristics of the gen-
erated signals, we calculate power spectral density S ( f ) of
the voltage oscillations in the resonator V1(t). Figures 4 il-
lustrate typical spectra of S ( f ) for different values of the
bias voltage V0. For V0 = 830 mV [Fig. 3(a)] the oscilla-
tions of V1 have a discrete spectrum S ( f ) with the dom-
inant peak at f ≈ 12.72 GHz corresponding to the basic
frequency of oscillations. The peak is surrounded by har-
monics and sub-harmonics delimited by frequency interval
∆ f ≈ 3.18 GHz. For voltages V0 ∼ 863 mV [Fig. 4(b)]
the spectra become broadband and continuous, confirming
generation of developed chaos for larger values of V0.

We quantitatively characterise the bandwidth ∆ f of the
generated signal which is defined as the difference ∆ f =
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fb2 − fb1 between the upper ( fb2) and lower ( fb1) bound-
ary of the frequency range, within which the power den-
sity exceeds the half of the maximum spectral density,
which is observed for the frequency fm. The dependence
of ∆ f (V0) for V0 > 820 mV is shown in Fig. 5. For V0
between 0.820 mV and 0.841 mV the bandwidth of V1 is
practically zero reflecting the periodicity of V1(t) oscilla-
tions. However, when V0 exceeds 0.841 mV the bandwidth
of V1(t) becomes finite, implicating the onset of chaos. The
bandwidth of the corresponding oscillations change signifi-
cantly between ∼ 650 MHz for V0 = 858 mV and ∼ 3 GHz.
This fact proposes that V0 can be used for effective control-
ling the bandwidth of signal generated in the SL. Evidently,
the wide-band chaotic regimes can be interesting for devel-
opment of THz chaotic semiconductor sources for commu-
nication systems with chaotic carriers or superlattice–based
fast random number generators [10, 12, 15].

5. Conclusion

We demonstrated theoretically and experimentally that
the SL coupled to a resonator can generate chaotic sub-THz
oscillations of current and voltage. Appearance of chaos
was confirmed by calculation of spectra and the Laypunov
exponents. Remarkably that variation of V0 can change the
relative bandwidth within a significant range 0–28%. This
make the SL promising for for development of broadband
sources of chaotic microwaves or superlattice–based fast
random number generators [10, 12, 15], which could have
applications in high-speed chaotic communications.
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