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Abstract

We propose an application of the visualization
method called directional coloring by using mapping
direction of the difference equation. An invariant pat-
tern can be detected for a given chaotic attractor with
this coloring. Unstable periodic points(UPPs) are vi-
sualized as a crossing points of different colors and
these locations are determined by the pattern. With
this property and thanks to Newton’s mehtod, we
can compute UPPs systematically and accurately. We
show numerical results and their fractal nature.

1. Introduction

If we obtain a good mathematical model to de-
scribe dynamical behavior of the target system with
appropriate ways [2], we can extract much information
about the nonlinear phenomena from the model, such
as local and global bifurcations of singular points[4],
chaos[7], and synchronization of oscillations[5], and
so on. While, even for a chaos observed in a low-
dimensional dynamical system, many problems still
remain unsolved[6]. For example, computation of lo-
cations of unstable periodic orbits embedded in the
chaos, identification of saddles causing crises, relation-
ship among manifolds of saddles and chaos are still
challenging problems.

In this paper, we consider featuring direction infor-
mation between a current point and its n-time mapped
point into coloring, i.e., an argument defined by these
two points is utilized for coloring. This can depict
not only orientation or tendency of an orbit within
the chaotic attractor but also vector field of the sys-
tem. For some numbers for n, we have unique patterns
reflected from own nonlinearity. By this method, em-
bedded UPPs in a chaos attractor are visualized clearly
by concentrating points of colors. Although it is diffi-
cult to distinguish the locations of UPPs embedded in
chaotic attractors visually by the conventional meth-
ods, but the proposed method can specify them as
distinguishable points. Finally, as an application, we
propose an UPP detector by using the directional col-

oring results.
For one dimensional discrete systems xk+1 = f(xk),

we visually tell where the periodic points are, indeed,
the cross points of the graph of fn and xk+1 = xk

indicates them. Our method gives similar intuitive
information about UPPs.

2. Description in question and the visualization tech-
nique

The following two-dimensional nonlinear difference
equation is considered:

xk+1 = f(xk, yk, λ)
yk+1 = g(xk, yk, λ) (1)

where xk and yk are state variables, λ is a parameter, f
and g are C∞-class functions. With vector expressions
x = (x, y), and f = (f, g), the formula (1) is expressed
as follows:

xk+1 = f(xk, λ). (2)

Then n-times iterated map xk+n for xk is given as

xk+n = fn(xk, λ) (3)

The directional coloring method[1] is very easy, that
is, the current point is colored by the angle θ for the
n iterated point, see Fig.1(a). We only use the hue
information. Both saturation and intensity are fixed
through this work. Fig.1(b) explain an example col-
oring. It is noteworthy that this coloring process does
not require a high performance computation. To ob-
tain basins of attractions, many iterations and finding
periodicity are needed. The results of them look simi-
lar, but the directional coloring can be obtained many
times quicker.

In Fig.1(b), arrows show the average mapping di-
rections in each pixel (corresponding to a certain do-
main). A geographical properties of fn are reflected
to the the coloring result, that is, color changing looks
smooth since fn is C∞. We can assume changing of
θ is smooth about the UPP. Using this assumption,
we can detect 2-dimensionally UPPs (repellers) with
template matching method. It works successful, but
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Figure 1: Visualization method

it fails for saddle points. The reason of this failure is
related with the shape of basin boundaries. For ex-
ample, in a chaotic attractor for the following chaotic
map: {

xk+1 = yk + axk

yk+1 = x2
k + b

(4)

where a = 0.4, b = −1.24, stable manifolds construct
a millefeuille structure in the state plane. The flows
inside a basin tend to keep a certain direction along the
stable manifolds, thus the θ changes sharply around
the saddle.

The directional coloring results are shown in
Fig.2(a)–(h). Since there is a chaotic attractor in this
parameter value, a basin boundary for stable periodic
points is not defined, however, they look like basin
boundary pictures which can be seen in other param-
eter values. It turns out that change of a color is con-
centrating in a certain point of seeing these pictures.
We investigated the map direction from the surround-
ing color of this point. As a result, it turned out that
the point which is concentrating the color is an UPP.

3. Unstable Periodic Point Detector

Theoretically, any periodic point is unstable inside
a chaos attractor, i.e., any periodic point is a saddle,
unstable node, or unstable focus. Detecting UPPs has
been studied for a long time, and many efficient meth-
ods have been proposed.

As mentioned above, these periodic orbits are ex-
pressed visibly as concentrating points in the direc-
tional coloring. As an application of the directional
coloring, we propose a simple method which can de-
tect n-periodic UPPs in a given attractor. Firstly we
find some candidate pixels S whose eight surrounding
pixels make the hue circle centering on S. This scheme
is a simple image processing, there are no technical
difficulties. Although this method also detect periodic
points whose period is a divisor of n, a good initial
guess can be supplied if the user narrows the search-
ing area for S. But Next we give this candidate points

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5 (f) n = 6

(f) n = 10 (g) n = 15

(h) n = 20

Figure 2: The directional coloring for Eq.(4) in x-y
plane. a = 0.4, b = −1.24
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Figure 3: Directional coloring for Eq.(4) with n = 37.
(a): around the fixed point, (b): an magnification of
(a).

to Newton’s method. The condition of the periodic
points are given in Eq.(5).

fn(x) − x = 0 (5)

The Jacobian matrix is obtained by solving the vari-
ational equation of Eq.(2). Newton’s method ensures
improve accuracy of locations of the UPPs from the
candidates. Fig.3(a) shows a complicated structure by
the directional coloring for n = 37 around the fixed
point x∗, but by scaling this area, a simple structure
is obtained, see, Fig. 3(b). One can easily confirm the
positions of periodic points visually. The first-guess
supplier also can detect candidate points accurately.
In the case n = 79, the initial guess obtained from
the image is (−0.85325626090,−0.51195375578), indi-
cated as c in Fig.4. With three times iteration of New-
ton’s method, an accurate location of 79-periodic point
(−0.85325626092671,−0.51195375577927) is obtained
with a 10−15 error. By iterating Eq.(4) with this so-
lution, we have the other 78 periodic points, and they
appear as visible concentrating points in this figure
except for x∗. They are unstable nodes since the mul-
tipliers are 3.4 × 108 and −1.4 × 109. Furthermore,
they are proper 79-periodic points since n is a prime
number. Note that the repellers in this system cannot
be obtained by inverse time simulation since this map
is not invertible.

4. Invariant pattern and its fractal nature

One can notice that coloring patterns of Fig.3(a)
and Fig.4 are similar, in fact, if one of them is rotated
π radian about x∗, they are almost coincident. We ex-
perimentally confirmed that there definitely exists this
invariant minimum pattern around x∗ for any n un-
der an allowance of its rotation. The color assignment
of the pattern is also invariant and periodic points lo-
cated in this pattern can be enumerated. The position
of a periodic point c defined above is actually the near-
est n-periodic point and it is relatively invariant from
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-0.85325627 -0.85325625x
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Figure 4: Directional coloring for Eq.(4) with n = 79.
This figure show an invariant minimum pattern. Many
UPPs are visualized.
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Figure 5: A scale property of the invariant minimum
patterns. We choose prime numbers for n, 11 ≤ n ≤
97. The fitted straight line is ε ≈ −0.116n + 1.076.

x∗. We utilize this point for measuring the scale. Let ε
be a logarithm of an Euclid distance between c and x∗.
We compute ε to measure the scale of each invariant
minimum pattern.

Fig.5 show clearly a scale law, also demonstrate that
the detection of periodic points with the directional
coloring is worked out quite accurately. For every
step for increment of n, the invariant pattern shrinks
to 58.6 percent for each, and its rotated with a cer-
tain degree, and it it embedded into the state space.
As shown in Figs.3(b) and 4, the number of periodic
points appeared in the invariant minimum pattern is
fixed, therefore a finite number of nesting for the in-
variant minimum pattern determines the total number
n. A fractal structure observed in a chaos attractor
usually refers Julia sets, i.e., infinite times magnifica-
tion of the set cannot reach a simple structure. For
coloring results for Eq.(4), a finite number n means
a finite order of nesting, therefore this enables us to
detect UPPs with a specified number of period. This
property is possibly special for Eq.(4), however, it is
notable that the directional coloring can point out it.
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5. In the Case of Another Parameter

Next, we analyze in the case of another parameter
value. Let us assume a = −0.1 and b = −1.7. Also
chaotic attractor is given with this parameter.

(a) n = 1 (b) n = 5 (c) n = 10

Figure 6: The directional coloring for Eq.(4) in x-y
plane. a = −0.1, b = −1.7.

Fig.6(a)–(c) show coloring results by using direc-
tional coloring with n = 1, 5, and10, respectively.
The common fixed point shared in all figures is
x∗ = (−0.865097186201,−0.951606906110). And it
is turned out that x∗ =repeller.
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(a) n = 36 (b) n = 40

Figure 7: Directional coloring for Eq.(4) with n =
36, 40. This figure show an invariant minimum pat-
tern. Many UPPs are visualized.

Fig.7(a) show complicated structures visualized by
the directional coloring for n = 36 and 40 around the
fixed point x∗. There is a pattern relating the genera-
tion of periodic points for given n, that is, we can also
find a new created cross point near x∗ as c in both
figures.

Fig.8 show clearly a scale law. This result also
demonstrate the fractal nature. If one locate c once
with arbitrary number of k with Newton’s method, any
location of c is computed (predicted) by the the scal-
ing fact ε for any number of n. Note that other n − 1
points are given by repeating Eq.(2) simply. Then we
have a systematical computation of UPPs by the di-
rectional coloring.
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Figure 8: A scale property of the invariance in the
pattern. The fitted straight line is ε ≈ −0.1202n +
0.4441.

6. Conclusion

The directional coloring reveals an invariant pattern
hidden in the chaotic attractor. With this method,
UPPs with the specific number of period is visualized.
As an application, a detection scheme of these UPPs
is shown. As the future works, reason for organization
of the invariant patterns should be analyzed[3].
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