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Abstract—A quadratic assignment problem
(QAP) is an NP-hard combinatorial optimization
problem. Some heuristic algorithms for the QAPs
is proposed in order to find the sub-optimum solu-
tions efficiently. In this paper, we propose a novel
heuristic algorithm for the QAPs based on the Or-opt
algorithm used for traveling salesman problems. The
proposed method introduces a slide-and-insert opera-
tion for the assignments of the elements in the QAP.
Furthermore, we improve the proposed algorithm by
combining it with the 2-opt algorithm. We also use
chaotic dynamics instead of the random numbers.
Numerical simulation results, which compare the
solving performance of the proposed algorithms with
the random numbers and the chaotic dynamics, are
shown.

1. Introduction
A quadratic assignment problem (QAP)[1] is one of

the combinatorial optimization problems, and belongs
to the class of NP-hard. For large-size QAPs, it would
take an impractical time to obtain the optimum solu-
tion. Therefore, heuristic algorithms have been pro-
posed in order to find the sub-optimum solutions in
reasonable time.

In this paper, we propose a slide-and-insert assign-
ment method, which is based on the Or-opt algorithm
for traveling salesman problems (TSPs)[2], which is
another NP-hard optimization problem. We also in-
troduce chaotic dynamics into the proposed method.
We compare the performance of the proposed method
with the chaotic dynamics and that with the random
numbers through numerical simulations.

1.1. Traveling Salesman Problem (TSP)

The TSP seeks the shortest route that visits each
city only once, and returns to the starting point. The
length of a tour can be expressed as eq. (1).

length =
n−1∑
i=1

C(p(i), p(i+ 1)) + C(p(n), p(1)) (1)

where p(i) (1 ≤ i ≤ n) is the element of the permu-
tation p, which gives a feasible solution, C(a, b) is the
distance between cities a and b, and n is the number

of cities. There are (n − 1)!/2 possible routes for the
size-n TSP, so that it is impossible to obtain the ex-
act solution for reasonable time if the number of cities
increases. Therefore, many heuristic algorithms were
proposed to obtain the sub-optimum solutions in rea-
sonable time. The Or-opt algorithm is one of these
heuristic algorithms [3].

1.2. Or-opt Algorithm

In the Or-opt method [3], we select successive 1 to 3
cities (block). We then insert them into another path.

Fig. 1 shows the schematic diagram of the Or-opt
algorithm. In the example shown in the figure, the
block starts from the city 5 with the block size of 3.
The block is inserted between the city 4 and the city 1.
First, we take out the city 5 to the city 7 from the tour.
Next, we connect the path between the city 2 and the
city 3. In addition, the path from the city 4 to the city
1 is removed in order to insert the block. Finally, the
block is inserted to the empty path to make a tour.

1.3. Quadratic Assignment Problem (QAP)

The QAP can be described as follows, given two ma-
trices A (distance matrix) and B (flow matrix). The
objective of the QAP is to find a permutation p of the
elements which minimizes the following object func-
tion F given by
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Figure 1: A schematic diagram of the Or-opt algo-
rithm. For example, we create a block consists of the
city 5 to the city 7. Then we insert the block in the
path between the city 4 and the city 1.
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F =
n∑

i=1

n∑
j=1

aijbp(i)p(j) (2)

index : 1, 2, · · · , n
p : {p(1), p(2), · · · , p(n)} (3)

where aij and bij are the (i, j)th elements of the ma-
trices A and B, respectively, p(i) is the ith element of
p, and n is the problem size. There are n! total com-
binations for the QAP, therefore, it is hard to obtain
the exact solution in the case of large-scale QAPs.

2. Slide-and-Insert Assignment Method with
Chaotic Neurodynamics

2.1. Slide-and-Insert Assignment Method

The slide-and-insert assignment method shown in
Fig. 2 is based on the Or-opt algorithm for the TSPs.

First, we arbitrarily choose a city. The element as-
signed to the city is the starting point of the block.

Next, we select the city that will be the insert point
of the block. For example, if the insert-point is the
city r, the block is inserted between the element p(r)
and the element p(r + 1).

In addition, we choose the block size which is less
than or equal to 3. We need to make a space between
p(r) and p(r + 1) to insert the block. As shown in
Fig. 2(a), we temporarily take out the block from the
permutation p, so that the cities of the block are now
empty. The elements assigned to the cities next to the
end of the block are reassigned to the empty cities by
sliding them to create an empty space for the insert of
the block as shown in Fig. 2(b). This reassignment is
referred to as the slide operation.

In the slide operation, the elements move in one way
to the descending order of the city numbers. In addi-
tion, if the enough numbers of successive elements for
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Figure 2: A schematic diagram of the slide-and-insert
assignment method. In this example, the starting
point of the block is the city II, and the block size
is 3. (a) We temporarily take out the block from the
permutation p. In other words, the cities II, III, and
IV are made empty. (b) The elements of the city V to
the city VI are reassigned to the empty cities through
the sliding operation. (c) Finally, the elements of the
block are inserted into the insert point, the city IV.

the slide operation cannot prepared, we use the ele-
ments assigned at city I, II, III, and so on.

Finally, the elements of the block are inserted into
the cities which became empty as a result of the slide
operation as shown in Figs. 2(c) and 2(d). This oper-
ation corresponds to the insert operation.

It should be noted that the slide-and-insert assign-
ment method sometimes alters the solution dramati-
cally. As a result, it cannot spend enough time for the
local search. Thus, we take advantage of this prop-
erty. That is, we first use the 2-opt algorithm (Fig. 3)
for the local search [4]. When the 2-opt algorithm is
trapped in the local minimum, we then apply the slide-
and-insert assignment method to escape from the local
minimum.

Fig. 3 shows an example of the 2-opt algorithm.
First, we select the element i. Next, we select the
city j to which we assign the element i. At the same
time, the element p(j) that was assigned to the city
j is assigned to the city q(i). The objective function
will be improved until the algorithm is trapped in the
local minimum because the 2-opt algorithm is a local
search method.

In contrast, the objective function is rarely improved
by the slide-and-insert assignment method. Thus, we
use random numbers in the slide-and-insert operations
in order to explore a large solution space regardless of
the current solution.

Moreover, we introduce the chaotic dynamics into
the slide-and-insert assignment method instead of
the random numbers to further control the searching
space.

2.2. Chaotic Neural Network

In this paper, we use the chaotic neural network
model [5] as described in eqs. (4) to (7) [6][7].

ξij(t+ 1) = max
k

{β∆ijk(t)} (4)

ζij(t+ 1) = krζij(t)− αxij(t)

+θ(1− kr) (5)

yij(t+ 1) = ξij(t+ 1) + ζij(t+ 1) (6)

xij(t+ 1) =
1

1 + exp(
−yij(t+1)

ϵ )
(7)
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Figure 3: An example of the 2-opt algorithm where the
element i is assigned to the jth location, and element
p(j) is assigned to the q(i)th location.
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where ξij(t + 1) is the gain effect, ζij(t + 1) is the
refractory effect, β is a scaling parameter of the gain
effect, kr is a decay parameter of the refractory effect,
α is a scaling parameter of the refractory effect, θ is a
bias, yij(t+ 1) is the internal state, ϵ is the steepness
of the output function, ∆ijk = F0 − Fijk is the gain
of the objective function value, F0 is the current value
of the objective function F , and Fijk is the value of F
after the slide-and-insert assignment method.

In addition, we pay attention to the number of
change in the assignments (changes-in-assignments)
through the slide-and-insert assignment. In the ex-
ample shown in Fig. 2, the elements of the city II to
the city VI are reassigned. Therefore, the changes-in-
assignments is 5. In the slide-and-insert assignment
algorithm, j ̸= 1 and 2. This is because when j=1,
there is no change in p, and when j=2, the method is
equivalent to the 2-opt algorithm.

Fig. 4 shows a schematic diagram for the slide-and-
insert assignment method with the chaotic neural net-
work. As shown in the figure, we prepare n× n in the
chaotic neurons configuring a chaotic neural network
for the size-n QAPs. In the figure, i represents the
starting point of the block, and j corresponds to the
changes-in-assignment. As shown in Fig. 4, 2n neu-
rons will not be updated because j ̸= 1 and 2. As a
result, we can reduce the computational time by 2n
neurons exploiting the changes-in-assignments.

Fig. 5 shows a flow chart for the proposed method
with the chaotic dynamics. First, we generate the
initial permutation using the random numbers. As
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Figure 4: The slide-and-insert assignment method
with the chaotic neural network. If the (i, j)th neu-
ron fires, we set the head of the block to the ith city.
We then use the slide-and-insert assignment method
with the changes-in-assignment of j.
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Figure 5: A flow chart of the proposed method with
chaotic dynamics.

shown in the figure, we next select the neuron which
has not been updated yet. Then, we determine the
block size by evaluating the gains for the block sizes
from 1 to 3. The block size will be the size that
gives the largest gain. After the block size is deter-
mined, we update the internal state of the neuron. If
xij(t + 1) > 0.5 (the neuron fires), then we apply the
slide-and-insert assignment method.

For example, if the (2, 5)-neuron fires, the element
is assigned to the city II is the start point of the block,
and assigned elements from the city II to the city VI
are reassigned using the slide-and-insert assignment
method. Because p is changed largely, the searching
space may also be changed dramatically. Thus, we
should check whether the sub-optimum solution exists
in the current solution space by the 2-opt algorithm.
We continue to apply the 2-opt exchanges until the
algorithm is trapped to the local minimum.

One iteration is completed when all the neurons in
the network are updated.

3. Simulation Results
We show the numerical simulation results for the

proposed method with the chaotic neurodynamics.
The results with the random numbers instead of the
chaos are also shown for comparison. The random
number was generated by the rand{} function in C.
For both methods, we execute 1000 iterations and 30
trials.

We evaluate the average error rate (AER) from the
optimum solution defined by

AER =
1

30

30∑
t=1

(Fmin(t)− Fopt)× 100 [%] (8)
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Table 1: The parameters for the chaotic neural net-
work

Size Instance Parameters
α β kr ϵ θ

nug12 0.5 0.005 0.8 0.05 2
chr12a 0.5 0.000025 0.8 0.05 2

12 chr12b 0.5 0.000025 0.8 0.05 2
rou12 0.5 0.000025 0.8 0.05 2
had12 0.5 0.000025 0.8 0.05 2
tai12a 0.5 0.000025 0.8 0.05 2
nug20 0.5 0.005 0.8 0.05 2
chr20a 0.5 0.0002 0.8 0.05 2

20 chr20b 0.5 0.00015 0.8 0.05 2
rou20 0.5 0.000025 0.8 0.05 2
had20 0.5 0.005 0.8 0.05 2
tai20a 0.5 0.000005 0.8 0.05 2
nug30 0.5 0.00075 0.8 0.05 2
lipa30a 0.5 0.0075 0.8 0.05 2
lipa30b 0.5 0.000025 0.8 0.05 2

30 kra30a 0.5 0.00003 0.8 0.05 2
kra30b 0.5 0.00003 0.8 0.05 2
tho30 0.5 0.000025 0.8 0.05 2

where Fmin(t) is the minimum objective function ob-
tained during the t-th trial, and Fopt is the optimum
objective function.

The network parameters for the chaotic neural net-
work used in the simulation for each problem are
shown in Table 1.

Table 2 shows the AER for each problem with the
chaotic dynamics and random numbers.

As shown in Table 2, the proposed method with
the chaotic dynamics is better than that with the ran-
dom numbers. However, as shown in Table 1, the
value of β are different for each problem. This is be-
cause the gains obtained by the slide-and-insert assign-
ment method are different depending on the problems.
Therefore, the dynamics of the neuron in the neural
network may change according to the characteristics
of the problems.

4. Conclusions

In this paper, we have proposed the slide-and-insert
assignment method for the QAPs based on the Or-opt
algorithm for the TSPs. We have also introduced the
chaotic dynamics to the proposed method.

Numerical simulation results have shown that the
proposed method with the chaotic dynamics is more
effective than that with the random numbers. How-
ever, the searching ability is affected by the value of β.
Therefore, we need to investigate the dynamics of the
proposed method in order to determine the optimal
parameter set.

Acknowledgment

This work was supported by Kakenhi (20300085).

Table 2: The AER
Size Instance AER

Random [%] Chaos [%]
nug12 0.12 0.00
chr12a 1.62 0.00

12 chr12b 0.00 0.00
rou12 0.13 0.00
had12 0.00 0.00
tai12a 0.00 0.00
nug20 0.54 0.00
chr20a 12.65 0.00
chr20b 7.98 0.00

20 rou20 1.00 0.53
had20 0.01 0.00
tai20a 1.96 0.33
nug30 1.51 0.10
lipa30a 1.59 0.00
lipa30b 5.68 0.00

30 kra30a 2.79 0.00
kra30b 1.62 0.015
tho30 1.48 0.55
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