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Abstract–This paper presents a methodology for 
designing an adaptive sliding mode observer to achieve 
synchronization of a class of nonlinear systems with 
unknown parameters. The observer’s states are driven by a 
sliding-mode error signal and the estimation of unknown 
parameters is updated according to a dynamic 
minimization algorithm. The convergence of the 
synchronization errors and parameter estimation errors has 
been justified by the conditional Lyapunov exponents and 
the effectiveness of the design has also been confirmed by 
simulations. 

1. Introduction 

Adaptive synchronization of nonlinear systems has 
received considerable attentions recently. The main 
objective of adaptive synchronization is to design a 
dynamical system (also called adaptive observer) 
synchronizing with a targeted system, even though some 
of system parameters are unknown [1]. Usually, the 
achievement of synchronization also implies the revealing 
of the unknown parameters, leading to practical and 
interesting applications, such as secure communications 
[2], cryptanalysis [3], system modeling [5,6], to name a 
few. 

The common design strategy of adaptive observer is 
based on the concept of adaptive feedback control, while 
the global convergence for state and parameter estimation 
errors is justified by Lyapunov stability theorem [1,7]. 
However, in order to assure the stability, restrictions on 
the targeted system are imposed. Specifically, the 
unknown parameters can only reside in the dynamical 
equation of the observable states or the system has to be 
transformed into some particular forms, such as state-
affine form [1]. 

On the other hand, sliding mode observer (SMO) has 
been widely applied for achieving finite time 
synchronization [8]. SMO is also well-known for its 
robustness with respect to uncertainties [9], and its 
stability has been mathematically proved for some cases, 
such as those given in [8]. Although SMO is useful for 
achieving synchronization, its uses in adaptive 
synchronization need further exploration, as the stability 
condition may not be easily obtainable. Thus, the 
objective of this paper is to propose an effective design 
methodology to solve this problem. It is to incorporate the 
SMO design together with the dynamic minimization 

algorithm, so that a sliding mode control signal with 
parametric updating rules can be designed. The resultant 
adaptive SMO (ASMO) can then achieve synchronization 
and estimate unknown parameter simultaneously.  

The organization of this paper is as follows. In Sec. 2, a 
design of ASMO is proposed with the analysis of its 
stability. To further verify its performance, simulation 
results for achieving adaptive synchronization of Lorenz 
system are presented in Sec. 3. Finally, conclusions are 
drawn in Sec. 4. 

2. A Design of Adaptive Sliding-Mode Observer  

Consider a class of nonlinear systems expressed as 
below: 
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nonlinear functions, satisfying the Lipshitzian condition, 
i.e. there exists a positive constants ∞<γ ,  such that   
                  xxxFxF ˆ)ˆ()( −≤− γ  ;  (2) 
y is the observable output; C  is the output matrix; ),( CA  

is observable and TX  denotes the transpose of X. In this 
paper, we focus on the case that only one system state is 
measurable, i. e. ]010[ )(1)1(1 lnlC −×−×=  or .lxy =  

In order to achieve adaptive synchronization of (1), the 
following ASMO is proposed: 

)ˆ,()ˆ(ˆ)(ˆ yyUxFxqAx ++=&  (3a) 
xCy ˆˆ =  (3b) 

),ˆ()ˆ( yijijijij exhxq μδ=&  (3c) 

where ly eCeyye ==−= ˆ denotes the output error with 

;x̂xe −= ijq  is the estimate of ijp  and 
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yeS =  as the sliding surface, the sliding mode control 

signal )ˆ,( yyU  is then designed as: 
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whereα  is a positive constant; nK ℜ∈  is the gain matrix  
such that KCpAA −= )(0  is a strict Hurwitz matrix, and 
the following Lyapunov equation has a positive solution 
Φ  for a positive definite matrix 0>Ω=Ω T , so that 
                            ;00 Ω−=Φ+Φ AAT                   (5) 

)(td  is an adaptive gain governed by: 

)()( tdetd y β−=&   (6) 
with β >0 and 0)0( >d .  

The design of ASMO (3) is based on the following 
three key points: 
(1) Similar to our previous design [3,4] for linear-

feedback adaptive observer, the feedback gain K is 
set to stabilize the linear part of the system such that 
if all the parameters are known and the Thau 
condition holds, we have the syncrhonization errors 
converge to zeros asymptotically based on Lyapunov 
stability theorem. Since )( pA  is unknown in real 

situation, K  is chosen so that ))((~ )0(
0 KCqAA −= is 

stabilized, where )0(q  is the initial auxiliary value of 
p .  

(2) ijh is designed based on dynamic minimization 
algorithm [10]. According to the dependence of 
unknown parameters on the measurable system 
output and following the idea presented in [3,4,10], 
the parametric updating laws are summarized as 
follows: 
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      Case 2: If ijq  appears in ),ˆ( qxFi ,  li ≠  while the 

time evolution of lx̂ explicitly depends on ,ˆix  

.)ˆ(
ˆ

)ˆ(sgn y
ij

i

i

l
ij e

q
qxF

x
qxFh

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∂
∂

=
,,                  (8) 

Case 3: If ijq  does not belong to the above two cases,   
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(3)  ijμ is designed such that the synchronization errors 
converge with a similar rate. It is approximated by 
the case of only single unknown and details can be 
referred to [3,4]. Let ijijij qpr −=  denoting the 
parameter errors. As ijμ  is independent on the output 

error ,ye both )(td  and )(trij  depend on the 

observable state error ye  with the same order, which 
further ensures that the synchronization errors 
converge with a similar rate.  

3.  Simulation Results 

The Lorenz system is used for evaluating the 
performance of ASMO, as it is well-known to be a 
difficult synchronization problem if the unknown 
parameters reside in all the three dynamical equations and 
only the first state is observable. 

Consider the dynamics of a Lorenz system described by: 
                       )()( xFxpAx +=&                                     (10) 
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being the unknown parameters. The vector of nonlinear 
functions is given by .]0[)( 2131

TxxxxxF −=  
Let 1xy =  be the available output (i.e. [ ]001=C ), and 
the sliding mode surface 1eCeS == .  

Based on Sec. 2, an ASMO can be designed as follows: 
                   )ˆ,()ˆ(ˆ)(ˆ yyUxFxqAx ++=&                          (11) 
with the dynamics of the unknown parameters iq governed 
by: 
                  ),ˆ()ˆ( 1exhxq iiii μδ=&                                      (12) 
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The detailed design procedures are described as follows: 
Step 1: Determine the sliding mode control signal U   

In the simulation, it is letting the true values of the 
unknown parameters ,101 =p ,282 =p ,667.23 =p while 

their initial estimates are set to be [ ] .4.22516)0( Tq =  

By setting [ ] ,13080 TK =  we obtain the eigenvalues of 

))((~ )0(
0 KCqAA −= as 1503.95,400.2,8497.13,2,1 −−−=λ , 

which are all negative. Then, by setting 3310 ×=Ω I ( 33×I  is 
the 3×3 identity matrix), the solution of LE equation (5) 
according to Kronecker tensor product yields: 

. 
2.0833 0.0804-  0.0171-
0.0804- 2.8332 0.1354-
0.0171- 0.1354-0.0593

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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Then, we have the Thau condition implying that 

.7556.1
)(2

)(

max

min =
Φ
Ω

<
λ
λγ   

Step 2: Design parametric updating laws 
The functions ih  are derived by using the dynamic 

minimization algorithm [3,4,6,7]. According to different 
cases given in (7)-(9), it can be obtained that:  

,)ˆˆsgn( 1121 exxh −= ,)ˆsgn( 112 exh = and 1313 )ˆˆsgn( exxh = . 
Moreover, to make all the state errors ie converge in a 

similar way as ,1e the auxiliary functions iμ are introduced 
as given in (12). Following the same method as adopted in 
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[3, 4], it can be derived that 131 == μμ  and 22 x̂=μ (due 
to the page limitation, the procedures are omitted here). 

Substituting ih and iμ into (12), the final parametric 
updating laws are expressed as: 
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and that completes our ASMO design. 
To verify the feasibility of our approach, the largest 

conditional Lyapunov exponents (CLE) are computed. 
The use of CLE for the justification of synchronization 
was firstly proposed by Pecora and Carroll in [11,12], 
stating that synchronization can only be achieved if all the 
CLEs are negative. In our previous works [3,4], the 
impact  of the feedback gains K  on the stability of the 
linear-feedback based observers have been investigated, 
showing that the stability of the proposed design can be 
ensured if a negative largest CLE is obtained. 
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Fig.1 The largest CLEs for differentα and β  with the 

feedback gains [ ] ,13080 TK =  and the stiffness 
constants .]12412[ T=δ  

Obviously, the main difference between the ASMO and 
the linear-feedback based adaptive observer is the 
introduction of the sliding mode control signal 

)sgn()( 1
y

T eCtd −Φα  in (6) which is affected by the 
parametersα and β .  Therefore, the effects of α and β  
to the performance of the estimation are studied and the 
results are shown in Fig. 1. As shown in Fig.1, it is noticed 
that a negative CLE is obtained for a large regime of 
bothα and .β  

The impact of the stiffness constants on the largest CLE 
is also obtained as presented in Fig. 2. It is noticed that in 
a relative large region of stiffness constants ,δ all the 
CLEs remain negative, and hence the stability of the 
proposed design is confirmed. 
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Fig. 2 The largest CLE with different stiffness constants, 
where [ ],2063,1 ∈δ and 4,22 =δ  respectively. 

Based on the above study, we choose ,5.2=α  

,40=β [ ] ,13080 TK = and T]12412[=δ for the 
simulation, and the initial value of d is set to be 

.100)0( =d  Figure 3 depicts the convergences of state 
errors ie  and system parameters .iq  The performance of 
the linear feedback adaptive observer proposed in [3], i.e.  
using ,yKeU = is also presented for comparison. To have 
a fair comparison, the same parameter settings have been 
used. It is clearly observed that the convergence of ASMO 
outperforms that of the linear feedback adaptive observer. 
The synchronization errors converge to very small values 
after initial transient time of about 30s using ASMO while 
70s is needed for the linear feedback adaptive observer. 
The unknown parameters are also accurately estimated by 
ASMO. For referencing, after s,100=t  the parameter 

estimation errors are: ,101.24 4
1

−×=r  ,102.94 4
2

−×−=r  
4

3 101.52 −×=r  for ASMO, while ,1078.2 3
1

−×=r  

,105.06 3
2

−×−=r  4
3 103.26 −×=r  for a linear feedback 
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adaptive observer. It should be emphasized that the 
proposed ASMO also works fine for a large class of 
nonlinear systems specified by (1), including the Genesio 
system, the Rössler system and so on. Due to page 
limitation, the results are not included here. 
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Fig.3. Convergences of ie and iq  for different observers, 
where the blue lines denote the linear-feedback adaptive 

observer and the black lines denote the ASMO. 

4. Conclusions 

In this paper, a systematic adaptive sliding mode 
observer is proposed for synchronizing nonlinear systems 
based on a scalar time series. The convergence of the 
proposed observer is justified by the conditional 
Lyapunov exponents and simulation results clearly 
illustrate that it outperforms the linear-feedback adaptive 
observer both in terms of accuracy and speed of 
convergence.   
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