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Abstract— In this study, we focus on investigating the am-
plitude characteristics of micro-probe vibration for atomic
force microscope for the theoretically-derived solutions.
To achieve this, we assume a higher quality factor than
in our previous works and compare the theoretical solu-
tions with the associated numerical results. Our findings
indicate that using a large approximation order for the non-
linear interaction force is crucial for obtaining an accurate
theoretical solution.

1. Introduction

Atomic Force Microscope (AFM) is a type of scanning
probe microscope (SPM) that utilizes a small cantilever
probe as a sensor to investigate the surface of a sample.
AFM enables observation and manipulation of the shape of
micro/nano-scale samples and is used for observing vari-
ous samples [1, 2]. In D-AFM, a harmonic external force
that oscillates in the vicinity of the natural frequency of the
micro-scale cantilever probe is applied. At each scanning
point of the probe, the oscillation modulated by the van
der Waals force (atomic force) between the probe tip and
the sample surface is detected and is feedback-controlled
to obtain information on the surface shape. The atomic
force shows a large nonlinearity when the probe and the
sample surface are in close proximity. This causes a non-
linear problem in cases where the vibration amplitude of
the probe is large or the probe intermittently contacts the
sample surface in tapping mode [3–10].

The cantilever probes used in conventional AFMs are
characterized by their sharp and pointed tips, which result
in the atomic force acting on the probe tip becoming dom-
inant [1]. Moreover, when the probe tip is bent towards
the opposite side, the external force dominates the system.
Therefore, to derive an approximated theoretical solution,
we assume a nonlinear system as a perturbation to the har-
monic oscillation when a small external force is applied,
and the distance between the probe and the sample surface
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is kept relatively constant [10].
In this study, we investigate the approximated theoreti-

cal solution for micro-cantilevers for D-AFM by assuming
the Morse potential for atomic force and approximating it
with a single degree of freedom mass-spring model [11].
By comparing the theoretical solutions with the associ-
ated numerical results, we investigate the relationship be-
tween the accuracy of the approximated theoretical solu-
tions and the approximation order. When the quality factor
Q with no interaction force increases, the scanning speed
becomes slower when investigating the amplitude modula-
tion in scanning probe microscopy (SPM). In such a case,
the theoretical solution plays a crucial role in understand-
ing the oscillation state of the probe tip in SPM. To address
this subject, we investigate the results for higher values of
Q than those assumed in our previous works [10, 11].

2. Cantilever Model and its Approximated Theorical
Solution

In this study, we consider a mass-spring model with a
single degree of freedom to model the lateral oscillation of
a probe tip, as shown in Fig. 1. The normalized equation of
motion in the lateral direction (z) is written by the follwing
[11]:

d2z
dτ2 +

1
Q

dz
dτ
+ (z − ε) = ae cos(ωτ) + F(z), (1)

where the normalized time is represented by the variable τ.
The parameters ae and ω correspond to the amplitude and
the angular frequency of the external force, respectively.
Note that ω = 1 means that the natural frequency of the
probe is same with the frequency of the external force. The
parameters ε and Q correspond to the tip-sample distance
and quality factor, respectively. The force F(z) represents
the atomic force as a function of z where we assume that
the force obtained from the Morse potential [12]:

F(z) = −βe−(αz+γ)(1 − e−(αz+γ)), (2)

where α, β, and γ are parameters that determine the shape
of the characteristic curve of the atomic force. In the
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subsequent results, we set the parameters α = 3.29315,
β = 70.1232, and γ = −2.6 referring to our previous
study [9] where we assume that both the probe and sam-
ple are made of silicon material, and the sample surface is
sufficiently large compared to the probe.

In this study, we adopt the concept of the harmonic bal-
ance method [10] to derive an approximated theorical so-
lution of Eq. (1). First, we assume the lateral oscillation in
the steady state as follows:

z(τ) = ε + a(τ) cosωτ + b(τ) sinωτ, (3)
(u(τ) ≡ a(τ) cosωτ + b(τ) sinωτ),

Here, we consider amplitude variables a(τ) and b(τ) as
slowly time-varying variables. Moreover, we substitute
Eq. (3) into Eq. (1) and ignore the following small terms
based on the above assumption and the condition Q ≫ 1:

d2a(τ)
dτ2 ≪ 1,

d2b(τ)
dτ2 ≪ 1,

1
Q

da(τ)
dτ
≪ 1,

1
Q

db(τ)
dτ
≪ 1.

(4)

In this study, we consider the exponential term in the
following equation and perform a Taylor expansion around
the tip-sample distance ε:

e−(αz(τ)+γ) ≃ e−γ
 N∑

n=0

f (n)(ε)
n!

(−ε + z(τ))n

 ,(
f (z) = e−αz(τ)

)
,

(5)

Here, f n(z) represents the nth order derivative of f (z)
with respect to τ. Moreover, N is the approximation or-
der in the Taylor expansion. In addition, by ignoring
the higher-order components of ω in the power series of
z(τ), we can derive the differential equations for the am-
plitude A(τ)(= a(τ)2 + b(τ)2) and initial phase ϕ(τ)(=
− tan−1 {b(τ)/a(τ)}):

dA(τ)
dτ

= g1(N, λ),
dϕ(τ)

dτ
= g2(N, λ). (6)

Here, λ represents a set of parameters λ =

(α, β, γ, ε, ae, ω) ∈ R6 that include normalized param-
eters from the fundamental Eq. (1) and the interaction
force in Eq. (2). Furthermore, g1(η, λ) and g2(η, λ) are
expressed as functions that depend on the Taylor approx-
imation order N in Eq. (5). Therefore, it is possible to
derive approximated theoretical solutions for the ampli-
tude A(τ) and initial phase ϕ(τ), and obtain frequency
response characteristics with respect to the amplitude
and the phase difference between the amplitude of the
probe tip and external force at steady-state(the explicit
form of the approximated theoretical solution is omitted
due to space constraints). In addition, the influence of
the approximation order N and the parameters can be
discussed.
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Figure 1: Mass-spring model for the lateral oscillation of a
forced probe tip.

3. Accuracy of the approximated theoretical solutions

In this study, we aim to investigate the relationship be-
tween the accuracy of approximated theoretical solutions
and the approximation order N. To achieve this, we com-
pare the theoretical solutions with the associated numerical
results. When the quality factor Q in Eq. (1) with no inter-
action force is increased n times, the transient time is also
multiplied by n. This phenomenon indicates that the scan-
ning speed becomes slower for larger Q when investigating
the amplitude modulation in SPM. In such cases, a theoret-
ical solution is crucial to understand the oscillation state of
the probe tip in SPM. To obtain results, we set the quality
factor Q=500, which is five times higher than that in our
previous works [10,11]. In the following results, we fix the
amplitude of the etxternal force ae = 0.01.

Figures 2 (a) and (b) show the numerically-obtained
timeseries of the probe tip for ω = 1 with the initial condi-
tion (z(0), ż(0)) = (ε, 0) when we set the tip-sample dis-
tance ε = 12 and ε = 6, respectively. The amplitude
of free oscillation is determined to be aeQ. In Fig. 2 (a),
we observe that the oscillation-amplitude of the probe tip
at steady-state is close to that of a free oscillation when
ε = 12, indicating that the interaction force is negligible
and has little effect on the oscillation amplitude. Whereas
the amplitude of oscillation for ε = 6 in Fig. 2 (b) decreases
due to the interaction force. As shown in the results, the
steady-state amplitude of the tip (= Ap) decreases as a func-
tion of the tip-sample distance ε because the attractive force
dominates [8].

To assess the accuracy of the approximated theoretical
solutions, we plot the frequency response curves for the
amplitude obtained from Eq. (6) when we set ε = 6 for
three values of the approximation order N = 3, 5, and 7
in Figs. 3(a)–(c). Although the same value of ε is used,
the larger N has stronger effect on the characteristic curve.
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Figure 2: Numerically-obtained timeseries of the probe tip
for ω = 1.

When ω = 1, the theoretically-obtained result for N = 7
shows the best fit with the numerical result in Fig. 2 (b).
To further investigate the influence of ε, we calculate the
theoretically-obtained amplitude when we set ω = 1 for
three values of the approximation order as shown in Fig-
ures 4(a)–(c), where the numerically-obtained amplitude
Ap is superimposed. From the figures, we can see that
the theoretically-obtained results are not consistent with
the numerically-obtained results when the amplitude be-
gins to decrease from that of a free oscillation. However,
the amplitude curve for larger N shows better fit with the
numerically-obtained result. The results indicate that we
can obtain the accurate approximated theoretical solution
by using the large N when we investigate the oscillation
amplitude for large value of Q.

4. Conclusions

The results of this study suggested that the use of a large
N was effective in obtaining an accurate approximated the-
oretical solution when investigating the oscillation ampli-
tude for large values of Q. As demonstrated in Fig. 3 and
Fig. 4, the theoretical results with larger N exhibited a bet-
ter fit with the numerically-obtained results, particularly
when the amplitude began to decrease from that of a free
oscillation.
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Figure 3: Frequency response curves for the amplitude ob-
tained from Eq. (6) when we set ε = 6 for three values of
the approximation order N = 3, 5, and 7.
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Figure 4: Theoretically-and numerically-obtained ampli-
tude decaying characteristics when we set ω = 1 for three
values of the approximation order.
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