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ABSTRACT

Hyperspectral imagery contains a wealth of spectral and spa-
tial information that can improve target detection and recogni-
tion performance. Existing feature extraction methods cannot
fully utilize both the spectral and spatial information. Data
fusion by simply stacking different feature sources together
does not work well either, as it does not take into account the
differences between feature sources. In this paper, we present
our recent graph-based approach for fusing spectral informa-
tion and spatial information of hyperspectral imagery, and we
show a case study on how our graph-based fusion method
combines multiple features, which can be applied in other ap-
plications. Our approach takes into account the properties of
different data sources, and makes full advantage of both the
spectral and the spatial features through the fusion graph. Ex-
perimental results on the classification of fusing real hyper-
spectral images are very encouraging.

Index Terms— Hyperspectral images, remote sensing,
classification, data fusion

1. INTRODUCTION

Recent advances in sensors technology have led to an in-
creased availability of hyperspectral data at very high both
spatial and spectral resolutions. Many approaches have been
developed to exploit the spectral and the spatial information
of hyperspectral imagery for classification. Some of these
approaches focus on increasing the spectral discrimination
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through dimension reduction [1]. Others explore the spa-
tial information of HS data through morphological features
[2, 3, 4, 5].

A limitation of the above approaches is that they rely
mainly on a single type of features (spectral or geometrical
features) and do not fully utilize the wealth of information
available in the HS data. The spatial information, once com-
bined with the spectral information, can contribute to a more
comprehensive interpretation of objects on the ground. For
example, spectral signatures cannot differentiate between
objects made of the same material (e.g. roofs and roads
made with the same asphalt), while they can often be easily
distinguished by their geometry. On the other hand, spatial
features alone may fail to discriminate between objects that
are quite different in nature (e.g. grass field, parking or a
swimming pool), if their shape and size are similar. Many
approaches have been developed to fuse the spectral and spa-
tial information for the classification of remote sensing data
[6, 8, 9, 10, 11]. Some of these approaches employ the so-
called composite kernel methods [6, 7] or their generalization
[9]. Others define spatial information through morphological
profiles, and concatenate spectral and spatial features in a
stacked architecture for classification [10, 11].

Despite their simplicity, the feature fusion methods that
simply concatenate several kinds of features together are
rarely useful in practice. These simple stacking methods can
perform even worse than using a single feature, because the
information contained by different features is not equally
represented or measured. The element values of different
features can be significantly unbalanced. Furthermore, the
resulting data by stacking several kinds of features may con-
tain redundant information. Last, but not least, the increase



in the dimensionality of the stacked features, as well as the
limited number of labeled samples in many real applications
may pose the problem of the curse of dimensionality and, as a
consequence, result in the risk of overfitting the training data.

In this paper, we present a method for graph-based fu-
sion of spectral and spatial information, abbreviated by GFSS.
This method couples dimension reduction and data fusion of
spectral features (from the original HS image) and spatial fea-
tures contained in the morphological features (computed from
the HS image). Variants of our GFSS method were very suc-
cessful in Data Fusion Contests of the IEEE Geoscience and
Remote Sensing Society (GRSS) in 20131, focusing on the
fusion of hyperspectral and LiDAR data [15] and in 2014, fo-
cusing on the fusion of thermal hyperspectral and visible im-
ages [16]. Here we present the essence of GFSS in a compre-
hensive way and we focus on fusing the spectral and spatial
information from a hyperspectral imagery as a prerequisite for
classification. We evaluate the performance of GFSS in com-
bination with support vector machines (SVM) classifier in a
case study on AVIRIS hyperspectral data set. Specifically,
our method first generates morphological profiles (MPs) on
the first few principal components (PCs) of the original HS
image. Then, we build a fusion graph where only the feature
points with similar both spectral and spatial characteristics are
connected. Finally, we solve the problem of data fusion by
projecting all the features onto a linear subspace, on which
neighboring data points (i.e., with similar both spectral and
spatial characteristics) in the high-dimensional feature space
are kept on neighborhood in the low-dimensional projected
subspace as well. The organization of this paper is as follows.
Section 2 provides a brief review of morphological features.
In Section 3, we present the proposed graph-based feature
fusion method. The experimental results on real urban hy-
perspectral images are presented and discussed in Section 4.
Finally, the conclusions of the paper are drawn in Section 5.

2. MORPHOLOGICAL FEATURES

Morphological features are generated by either applying mor-
phological openings or closings by reconstruction [2] on the
image, using a structural element (SE) of predefined size and
shape. An opening acts on bright objects compared with their
surrounding, while closings act on dark objects. For example,
an opening deletes (this means the pixels in the object take on
the value of their surrounding) bright objects that are smaller
than the SE. By increasing the size of the SE and repeating the
previous operation, a complete morphological profile (MP) is
built, carrying information about the size and the shape of ob-
jects in the image.

A morphological profile (MP) consists of the opening pro-
file (OP) and the closing profile (CP). For the panchromatic
image, MP is built on the original single band image directly.

1http : //hyperspectral.ee.uh.edu/?page id = 795.

The OP with M scales at pixel x forms M -dimensional vec-
tor, and so does the CP. By incorporating the OP, the CP and
original image, the morphological profile of pixel x is de-
fined as (2M +1)-dimensional vector. When applying MP to
the hyperspectral data, principal component analysis (PCA) is
widely used as a pre-processing step to reduce the dimension-
ality of the high-dimensional original data, as well as to re-
duce the redundancy within the bands. Then one applies mor-
phological openings and closings with reconstruction to con-
struct morphological profile on each PC independently. An
extended MP (EMP) is formed as a stacked vector consisting
of all the morphological profiles. Suppose p PCs are extracted
from the original hyperspectral data, then the EMP of pixel x
is a p(2M + 1)-dimensional vector. Fig. 1 shows a OP built
on the first PC. The effect of using morphological features
for classification of remote sensing data from urban areas has
been discussed in numerous studies [2, 3, 4, 5, 8, 9, 10, 11].

3. THE GRAPH-BASED FUSION METHOD

Let XSpe = {xSpe
i }ni=1 and XSpa = {xSpa

i }ni=1 denote the
spectral and spatial features after normalization to the same
dimension, where xSpe

i ∈ <D and xSpa
i ∈ <D. XSta =

{xSta
i }ni=1 = [XSpe;XSpa], and xSta

i = [xSpe
i ; xSpa

i ] ∈ <2D

denotes the vector stacked by the spectral and spatial features.
{zi}ni=1, and zi ∈ <d denote the fusion features in a lower
dimensional feature space with d ≤ 2D.

The goal of this paper is to find a transformation matrix
W ∈ <2D×d, which can couple dimensionality reduction and
feature fusion in a way of:

zi = WT xi (1)

where xi is a variable, which can set to be xSta
i . The trans-

formation matrix W should not only fuse different features
in a lower dimensional feature space, but also preserve local
neighborhood information and detect the manifold embedded
in the high-dimensional feature space. A reasonable way [12]
to find the transformation matrix W can be defined as follows:

arg min
W∈<2D×d

(

n∑
i,j=1

||WT xi −WT xj ||2Aij) (2)

where the matrix A is the edge of the graph G = (X,A). We
assume that the edge (between data point xi and xj) Aij ∈
{0, 1}; Aij = 1 if xi and xj are “close” and Aij = 0 if xi and
xj are “far apart”. The “close” here is defined by finding the
k nearest neighbors (kNN) of the data point xi. The kNN is
determined first by calculating the distance (we use Euclidean
distance here) between data point xi and all the data points,
then sorting the distance and determining nearest neighbors
based on the k-th minimum distance.

When the graph is constructed by spectral features (i.e.
G = GSpe = (XSpe,ASpe)), the k nearest neighbors (i.e.



Fig. 1: Morphological opening profile built on the first PC of hyperspectral image. The scale of circular SE varies from 2 to
6, with step size increment of 2. As the size of the SE increases in openings, more small bright objects disappear in the dark
background.

Ai,j = ASpe
i,j = 1, j ∈ {1, 2, · · · , k}) of the data point xSpe

i

indicate the spectral signatures of these kNN data points xSpe
j

are more similar in terms of Euclidean distance. On the other
hand, when the graph is constructed by spatial features (i.e.
G = GSpa = (XSpa,ASpa)), the k nearest neighbors (i.e.
Ai,j = ASpa

i,j = 1, j ∈ {1, 2, · · · , k}) of the data point
xSpa
i mean that they are more similar in term of the spatial

characteristic. We propose a fusion graph which we define
GFus = (XSta,AFus) as follows:

AFus = ASpe � ASpa (3)

where the operator ‘�’ denotes element-wise multiplication,
i.e. AFus

i,j = ASpe
i,j A

Spa
i,j . Note that AFus

ij = 1 only if ASpe
ij =

1 and ASpa
ij = 1. This means that the stacked data point

xSta
i is “close” to xSta

j only if all individual feature points
xIndi (Ind ∈ Spe, Spa) is “close” to xIndj . The connected
data points xSta

i and xSta
j have similar spectral and spatial

characteristics. If any individual feature point xIndi is “far
apart” from xInd

j , thenAFus
ij = 0. In real data, the data points

from the roofs (xSta
i ) and roads (xSta

j ) are both made with
the same materials (e.g. asphalt) and have similar spectral
characteristics (ASpe

i,j = 1), but different spatial information
(i.e. shape and size) (ASpa

i,j = 0), so these two data points
are not “close” (i.e. AFus

i,j = 0). On the other hand, the
data points from the grassy areas (xSta

i ) and soil areas (xSta
j )

have different spectral characteristics (ASpe
i,j = 0), but similar

spatial information (ASpa
i,j = 1), so AFus

i,j = 0 and these two
data points are “far apart”. When using the constraint in [13]
for avoiding degeneracy:

WT (XSta)DFus(XSta)T W = I (4)

where DFus is a diagonal matrix with DFus
i,i =

∑n
j=1A

Fus
i,j

and I the identity matrix, we can obtain the transformation

matrix W = (w1,w2, · · · ,wr) which is made up by r eigen-
vectors associated with the least r eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λr of the following generalized eigenvalue problem:

(XSta)LFus(XSta)T w = λ(XSta)DFus(XSta)T w (5)

where LFus = DFus − AFus is the fusion Laplacian matrix.

4. EXPERIMENTAL RESULTS

The dataset that we used in the experiments was captured
by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over northwestern Indiana in June 1992, with 220 spectral
bands in the wavelength range from 0.4 to 2.5µm and spa-
tial resolution of 20 meters by pixel. The calibrated data are
available online (along with detailed ground-truth informa-
tion) from http://cobweb.ecn.purdue.edu/˜biehl/. The whole
scene, consisting of the full 145× 145 pixels, which contains
16 classes, ranging in size from 20 to 2468 pixels, see Fig. 2.
Table 1 shows the number of labeled samples in each class.
Note that the color in the cell denotes different classes in the
classification maps (Fig. 2).

To apply the morphological profiles to hyperspectral im-
ages, principal component analysis (PCA) was first applied
to the original hyperspectral data set, and the first 3 principal
components (PCs) were selected (representing 99% of the cu-
mulative variance) to construct the EMP. A circular SE rang-
ing from 1 to 10 with step size increment of 1 was used. 10
openings and closings were computed for each PC, resulting
in an EMP of dimension 63.

The SVM classifier with radial basis function (RBF) [14]
kernels is applied in our experiments. SVM with RBF ker-
nels has two parameters: the penalty factor C and the RBF
kernel width γ. We apply a grid-search on C and γ using
5-fold cross-validation to find the best C within the given
set {10−1, 100, 101, 102, 103} and the best γ within the given
set {10−3, 10−2, 10−1, 100, 101}. We compare our approach



Fig. 2: HSI data sets used in our experiments. Left: false color image of Indian Pines; Right: ground truth of the area with 13
classes

Table 1: Data Sets Used in The Experiments

Class No. Class Name # Samples Class No. Class Name # Samples
1 Corn-notill 1434 2 Corn-min 834
3 Corn 234 4 Grass/Pasture 497
5 Grass/Trees 747 6 Hay-windrowed 489

7 Soybeans-notill 968 8 Soybeans-min 2468

9 Soybeans-clean 614 10 Wheat 212

11 Woods 1294 12 Bldg-Grass-Trees 380

13 Stone-steel towers 95

GFSS with the schemes of (1) Using original HSI (Raw); (2)
Using the MPs computed on the first 4 PCs of original HSI
(EMP) [2]; (3) Stacking all spectral and MPs together (Sta),
similar as [11]; (4) Features fused by using the graph con-
structed by stacked features XSta(i.e. LPP [13]) (LPP). We
select 20 labeled samples per class for training. The classi-
fiers were evaluated against the remaining labeled samples by
measuring the Overall Accuracy (OA), the Average Accuracy
(AA) and the Kappa coefficient (κ). Table 2 shows the accu-
racies obtained from the experiments, and Fig. 3 shows the
classification maps.

It can be found that only using single spectral/spatial fea-
ture is not enough for a reliable classification. It is better
sometimes to use single feature source than simply stacking
many of them for classification. Compared to the situation
with single spatial features (EMP), the OA of simply stack-

ing original spectral and spatial features (Sta) decreases more
than 10 percentage points, while increasing the dimensional-
ity. This indicates that the spatial information contained in
the original EMP was not well exploited in such a stacked
architecture. Indeed, when stacking all features together, the
element values of different features can be significantly unbal-
anced, and the information contained by different features is
not equally represented. The same problems happen when us-
ing the stacked features to build a graph in LPP method. Our
approach GFSS produced the best results, with OA improve-
ments of 4-30% over only using the single spectral/spatial fea-
ture source, with improvements of 14% over stacking both the
spectral and the spatial features by Sta, and with 3% improve-
ment over the LPP.



Table 2: Classification accuracies obtained by different approaches. The numbers in brackets are the numbers of extracted
spectral and spatial features, respectively.

Raw EMP Sta LPP GFSS
No. of Features 220 83 303 30 36

OA (%) 55.64 83.67 73.01 84.36 87.27
AA (%) 65.65 87.82 81.55 87.86 89.85

κ 0.506 0.815 0.697 0.823 0.855
Corn-notill 40.38 77.75 53.14 76.36 83.33
Corn-min 54.44 93.29 87.53 90.89 93.17

Corn 66.67 87.18 87.18 82.05 90.60
Grass/Pasture 72.43 77.26 75.86 77.06 79.07
Grass/Trees 81.39 92.37 93.17 97.99 98.26

Hay-windrowed 98.77 99.59 99.59 95.71 96.73
Soybeans-notill 52.17 78.31 62.60 81.82 83.06
Soybeans-min 34.40 77.07 61.10 75.24 82.13

Soybeans-clean 36.97 76.38 69.38 71.17 74.59
Wheat 96.23 99.53 99.53 99.53 99.53
Woods 79.06 87.09 80.60 97.99 93.59

Bldg-Grass-Trees 45.97 97.89 92.63 98.42 98.16
Stone-steel towers 94.74 97.89 97.89 97.89 95.79

(a) (b) (c)

(d) (e)

Fig. 3: Classification maps produced by the described schemes. Thematic map using (a) original HS data; (b) EMP of HS data;
(d) the LPP; (e) GFSS.

5. CONCLUSION

In this paper, we give a comprehensive presentation of a
graph-based feature fusion method, which enables to include



both spectral and spatial information in the classification
process. The morphological features, which carry the spa-
tial information, are first generated on the first few PCs of
HS image. Then, we build a fusion graph where only the
feature points with both similar spectral and spatial char-
acteristics are connected. Finally, we solve the problem of
data fusion by projecting all the features into a linear sub-
space. This projection guarantees preservation of the local
geometry properties. The neighboring relations are kept after
the dimension reduction. Experiments on a real hyperspec-
tral image demonstrate that the proposed fusion method can
greatly benefit the accuracy of the subsequent classification.
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