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Background & Research Objective

Information exchange on social NWs is being activated by the
popularity of information NWs.
⇒ Complex dynamics for describing propagation of activities on
the social and information NWs is a rich source of research topics.
The interaction between nodes (users) is asymmetric (it depends
on the direction of links), in general.
Link asymmetry is described by a directed graphs, and the
directed graph is normally expressed by an asymmetric matrix.
On the other hand, symmetric matrix-based model for network
dynamics is mathematically tractable.
Some types of asymmetric interaction can be analyzed using a
symmetric matrix-based model.� �

Objective: Analysis of oscillation dynamics on NWs caused by
asymmetric node interactions� �
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Advantages of Symmetric Matrix-Based Model

Any real symmetric matrices can be diagonalized.
The meanings of diagonalization: To simplify the relation between
nodes.
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Advantage: Network dynamics can be analyzed by decomposition
into independent simple models.
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Representation of NW structure by Matrix

Let G = G(V,E) be a directed graph with n nodes {1, 2, . . . , n}
(where V is the set of nodes and E is the set of links).
Let wij > 0 be the link weight of the directed link i → j of G.
The adjacency matrix A = [Aij ] is defined as follows:

Aij :=

{
wij , (if directed link (i → j) ∈ E)
0, (if directed link (i → j) ̸∈ E)

The adjacency matrix A for directed graph is asymmetric, in
general.
The adjacency matrix A can be applied to investigate the structure
of G algebraically.
ex) If wij = 1 for all the links, (i, j) component of Ak describes the
number of paths from node i to j with length of k.
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Definition of Laplacian Matrix

The weighted out-degree di of node i (i = 1, 2, . . . , n) is defined
as

di :=
∑
j∈∂i

wij .

The degree matrix is defined as D := diag(d1, d2, . . . , dn).
The Laplacian matrix L is defined as

L := D −A.
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The Laplacian matrix L for directed graphs is asymmetric, in
general.
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Classification of Link Asymmetry

Examples of typical asymmetric links:

(a) hub type relation (b) cyclic relation

weak link

strong link

In (a), link asymmetry can be reduced to a node characteristic．
⇒ Asymmetric links can be symmetrized.
In (b), link asymmetry is purely link’s characteristic. Asymmetric
links cannot be symmetrized．
In actual networks, type (a) relations are frequently appeared.
ex) A major blogger and his/her followers
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Symmetrization of Laplacian Matrix (1)

L has left eigenvector tm associated with eigenvalue 0, as
tmL = 0.

We assume that all components mi > 0 of tm = (m1, . . . , mn)
satisfies

miwij = mj wji (≡ kij).

The physical meaning of this condition is discussed later.
Let G = G(V,E) be the undirected graph whose link weight is kij
(= kji), and we define the Laplacian matrix L for G as follows:

L := D −A

where Aij :=

{
kij , ((i, j) ∈ E),
0, ((i, j) ̸∈ E),

D := diag

(
n∑

j=1
k1j ,

n∑
j=1

k2j , . . . ,
n∑

j=1
knj

)
.
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Symmetrization of Laplacian Matrix (2)

The original Laplacian matrix L for the directed graph can be
expressed by decomposition as

L = M−1 L.

where M = diag(m1, m2, . . . , mn)．
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We define the scaled Laplacian matrix S (S is a symmetric) as,

S := M−1/2 LM−1/2.
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Oscillation Phenomena on Networks (1)

To describe the propagation of activity of a node through
networks, let us consider oscillation dynamics on networks.

equilibrium

i

xi

j

xj

Let weight xi of node i be displacement from the equilibrium, and
let its restoring force be proportional to the difference in the
displacements of adjacent nodes.
Although the figure shows a 1-dimensional network, it is easily
extended to general networks.
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Oscillation Phenomena on Networks (2)

The oscillating model can be described by longitudinal wave only
if we consider 1-dimensional network.

i

xi

displacements from
the equilibrium

j

xjthe equilibrium point

Difference from well-known Kuramoto model:
weak interaction

The same (or similar) oscillators are weakly coupled each other
through NWs.
For the phase θi(t) of oscillator i, natural frequency ω, and a
constant ϵ,

dθi(t)

dt
= ω + ϵ

∑
j∈∂i

sin(θj(t)− θi(t)).
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Oscillation Phenomena on Networks (3)

Universality of our oscillation model:
Consider a general influence force between adjacent nodes f .

f = f(∆x) is a function of the difference of adjacent node states
∆x := xi − xj .
There is no influence between nodes if ∆x = 0, that is f(0) = 0.
If ∆x = 0 for all adjacent nodes, the network is in the ground state
(equilibrium).

By applying Taylor expansion to f(∆x) around ∆x = 0,

f(∆x) = −kij ∆x+O(∆x2).

The lowest degree term is O(∆x).
f is a restoring force, so kij > 0.
O(∆x2) describes non-linear effects of the restoring force f .
For small ∆x, our oscillation model can be applied to various types
of f .

M. Aida (TMU) ICTF 2016 July 7, 2016 11 / 32



Oscillation Model on Networks (1)

We assign the spring constant for each link i–j as the link weight
kij > 0.
We assign the mass of node mi > 0 for each node i.
The Hamiltonian H of our coupled oscillators system:

H :=
∑
i∈V

(pi)
2

2mi
+
∑

(i,j)∈E

kij
2

(xi − xj)
2

=
∑
i∈V

(pi)
2

2mi
+

1

2
(txLx),

where pi denotes the conjugate momentum of xi.
x = t(x1, . . . , xn)．
The canonical equations of motion:

dpi
dt

= −∂H
∂xi

= −
∑
j∈V

Lij xj ,
dxi
dt

=
∂H
∂pi

=
pi
mi

.
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Oscillation Model on Networks (2)

The EoM of the displacement vector x = t(x1, . . . , xn):

M
d2x(t)

dt2
= −Lx(t).

By multiplying M−1 from the left, EoM can be expressed using the
asymmetric Laplacian matrix L, as

d2x(t)

dt2
= −M−1 Lx(t) = −Lx(t). (1)

The link asymmetry can be represented as the mass of node.
The condition miwij = mj wji (for symmetrization of L)
corresponds to Newton’s 3rd law about an action and its reaction.
By using yi =

√
mi xi, y = t(y1, . . . , yn), EoM can be expressed as

d2y(t)

dt2
= −S y(t). (2)

Oscillation dynamics is described by the symmetric matrix S.
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Eigenvalues & Eigenvectors of S

The quadratic form of the scaled Laplacian matrix S:

ty S y =
∑

(i,j)∈E

kij

(
yi
mi

− yj√
mimj

)2

≥ 0.

So, all the eigenvalue of S are non-negative and minimum value is
0.
Numbering the eigenvalues of S in ascending order of their values:

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1

The eigenvector vµ associated with the eigenvalue λµ

(µ = 0, 1, . . . , n− 1) can be chosen as the eigenbasis:

S vµ = λµ vµ, vµ · vν = δµν ,

where δµν denotes the Kronecker delta.
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Solutions of Oscillation Dynamics on NWs (1)

By substituting y(t) into EoM (2) after expanding it by the
eigenbasis y(t) =

∑n−1
µ=0 aµ(t)vµ,

n−1∑
µ=0

d2 aµ(t)

dt2
vµ = −

n−1∑
µ=0

λµ aµ(t)vµ.

By extracting EoM for each mode,

d2 aµ(t)

dt2
= −λµ aµ(t).

Solution of the EoM for each mode is

aµ(t) = cµ e
±i (ωµ t+θµ), (3)

where ωµ =
√

λµ, i =
√
−1, θµ = phase, cµ = constant.

M. Aida (TMU) ICTF 2016 July 7, 2016 15 / 32



Solutions of Oscillation Dynamics on NWs (2)

The solution of EoM (2):

y(t) =
n−1∑
µ=0

cµ e
±i (ωµ t+θµ) vµ. (4)

The solution of the original EoM (1):

x(t) = M−1/2

n−1∑
µ=0

cµ e
±i (ωµ t+θµ) vµ

 . (5)

The phase θµ cannot be determined by EoM.
⇒ The behaviors of x(t) looks very different when the phase is
different.
What is the relationship between our oscillation model and actual
network dynamics?
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Oscillation Energy of Each Node

What is the relationship between our oscillation model and actual
network dynamics?
⇒ We regard the ocsillation energy of a node as the strength of
the node behavior.
The oscillation energy Ei of node i:

Ei :=
1

2
mi

n−1∑
µ=0

ω2
µ |xi(t)|2 =

1

2

n−1∑
µ=0

ω2
µ |yi(t)|2

=
1

2
mi

n−1∑
µ=0

ω2
µ |aµ(t)|2 (vµ(i))2,

Here,

vµ = t(vµ(1), . . . , vµ(n)).
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Network Model

An example of network for evaluations:

1
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23

Network with 23 nodes
The link weights of all links are set to 1.
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Oscillation Energy of Node & Node Centrality (1)
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When all the oscillation modes contribute at the same strength,
⇒ the source of activity is chosen at random.
In the simplest case (left), the oscillation energy corresponds the
degree centrality．The right is an example for directed network.
⇒ the oscillation energy gives an extension of the degree
centrality.

M. Aida (TMU) ICTF 2016 July 7, 2016 19 / 32



Oscillation Energy of Node & Node Centrality (2)
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When a certain node (node 1 or 12) is the source of activity,
⇒ the oscillation energy depends on the position of source node.
By superposing the oscillation energy for all different source
nodes, we have the degree centrality.
The oscillation energy is a generalized notion of the degree
centrality (for link direction & the position of source node).
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Kinetic Energy of Each Node

In order to consider time-dependent measure for node centrality,
⇒ we introduce the kinetic energy of each node.

E
(K)
i :=

1

2
mi

∣∣∣∣∣∣
n−1∑
µ=0

dxi(t)

dt

∣∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∣
n−1∑
µ=0

dyi(t)

dt

∣∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∣
n−1∑
µ=0

daµ(t)

dt
vµ(i)

∣∣∣∣∣∣
2

.

Time-dependent behavior can be described.
⇒ It reflects propagation of activity on networks.
The integrated value of the kinetic energy for a long time is
proportional to the oscillation energy.
⇒ Kinetic energy also gives a generalization of node centrality.
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Kinetic Energy of Each Node

0

0.2

0.4

0.6

= 1 (source node 
node ID

k
in

e
ti
c
 e

n
e

rg
y

(a)  )t =1

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

K

0

0.2

0.4

0.6

= 1 (source node 
node ID

k
in

e
ti
c
 e

n
e

rg
y

(b)  )t =3

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

K
0

0.2

0.4

0.6

= 1 (source node 
node ID

k
in

e
ti
c
 e

n
e

rg
y

(c)  )t =5

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

K

0

0.2

0.4

0.6

= 1 (source node 
node ID

k
in

e
ti
c
 e

n
e

rg
y

(d)  )t =7

E
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
K

Temporal evolution of the kinetic energy for the damped oscillation
(source node: 1).
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Oscillation Energy of Node & Betweenness
Centrality
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The link weight is set as the passing number of shortest paths.
Oscillation energy for a weighted network (left) & the betweenness
centrality (right).
Oscillation energy is shifted as the minimum energy is zero.
Our model might be the underlying mechanism for node centrality.
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Damped Oscillation on NWs (1)

EoM of the damped oscillation on NWs:

M
d2x(t)

dt2
+ γM

dx(t)

dt
= −Lx(t). (6)

EoM of the damped oscillation described using S:

d2y(t)

dt2
+ γ

dy(t)

dt
= −S y(t). (7)

By expanding by eigenbasis of S, EoM of each oscillation mode is
obtained as

d2aµ(t)

dt2
+ γ

daµ(t)

dt
+ ω2

µ aµ(t) = 0. (8)

By assuming the solution aµ(t) ∝ eαt, the characteristic equation is

α2 + γα+ ω2
µ = 0. (9)

The solution of the damped oscillation is determined by the
solution of the characteristic equation.
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Damped Oscillation on NWs (2)

The solution of the characteristic equation:

α = −(γ/2)±
√

(γ/2)2 − ω2
µ

If (γ/2)2 < ω2
µ, the solution describes damped oscillations:

aµ(t) = cµ e
−(γ/2)t ei

√
ω2
µ−(γ/2)2 t+i θµ , (10)

where cµ and θµ are constants.
If (γ/2)2 = ω2

µ, the solution describes critical damping:

aµ(t) = (aµ(0) + cµ t) e
−(γ/2) t, (11)

where cµ is a constant.
If (γ/2)2 > ω2

µ, the solution describes overdamping:

aµ(t) = c(1)µ eα+t + c(2)µ eα−t, (12)

where α+, α− are solutions of (9), and c
(1)
µ , c(2)µ are constants.
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Forced Oscillation on NWs

Let us apply the external force of frequency ω to a certain node j,

M
d2x

dt2
+ γM

dx(t)

dt
+ Lx(t) = (F cosωt)1{j}, (13)

whrere 1{j} =
t(0, . . . , 0,

j
∨
1, 0, . . . , 0) and F = const.

By using y = M1/2 x, EoM can be written in the form of

d2y(t)

dt2
+ γ

dy(t)

dt
+ S y(t) =

F cosωt
√
mj

1{j}. (14)

Let the solution of each mode be aµ(ω, t) = Aµ(ω) cos(ωt+ θµ),
we have

Aµ(ω) =
F bµ√
mj

1√
(ω2

µ − ω2)2 + (γ ω)2
, tan θµ =

−γ ω

ω2
µ − ω2

. (15)
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Concept of the Network Resonance Method

Let us give forced oscillation at a certain node and observe its
influence at several observation nodes.

forced 

～

oscillation
network

frequency ω

choose appropriate pair of input and output nodes
 with respect to each eigenvalue. 

～

observations at several nodes

forced 
oscillation

frequency ω

angular frequency of the forced oscillation

ob
se
rv
ed
 a
m
pl
itu
de

freqency of a peak

peak

ω+ω−

γ

ω2
µ
− γ2/2 ωµ

A ω2
µ
− γ2/2

√

2
A ω2

µ − γ2/2

µ
µ

A
ω

ω

1

If ω of the forced oscillation is near ωµ of eigenfrequency, the
amplitude of the oscillation becomes larger (resonanse)．
By observing the behavior of the amplitude with respect to the
frequency ω, we can estimate eigenfrequency ωµ (that is
eigenvalue λµ = ω2

µ of S) and the damping factor γ.
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Example of Amplitude Evaluation for Network
Resonance Method

Behaviors of amplitude for the forced oscillation using the 23-node
NW model:
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If we adopt inappropriate pair of input/output nodes, the peak of
the amplitude cannot be observed.
This problem can be avoided easily by choosing other input/output
node pair.
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Example of Eigenfrequency Estimation by Network
Resonance Method

A
ct

u
a
l  

va
lu

e0

0.1

0.2

0.4

e
ig

e
n

fr
e

q
u

e
n

c
y

0.3

E
st

im
a
tio

n
 0

1
-0

1

E
st

im
a
tio

n
 1

2
-0

1

E
st

im
a
tio

n
 1

2
-1

0
A

ct
u
a
l  

va
lu

e

E
st

im
a
tio

n
 0

1
-1

0

E
st

im
a
tio

n
 1

2
-0

1

E
st

im
a
tio

n
 1

2
-1

0
A

ct
u
a
l  

va
lu

e

E
st

im
a
tio

n
 0

1
-1

0

E
st

im
a
tio

n
 1

2
-0

1

E
st

im
a
tio

n
 1

2
-1

0
A

ct
u
a
l  

va
lu

e

E
st

im
a
tio

n
 0

1
-1

0

E
st

im
a
tio

n
 1

2
-0

1

E
st

im
a
tio

n
 1

2
-1

0
A

ct
u
a
l  

va
lu

e

E
st

im
a
tio

n
 1

2
-0

1

E
st

im
a
tio

n
 1

2
-1

0
A

ct
u
a
l  

va
lu

e

E
st

im
a
tio

n
 0

1
-0

1

E
st

im
a
tio

n
 0

1
-1

0

E
st

im
a
tio

n
 1

2
-0

1

ω1

ω5

ω2

ω3

ω4

ω6

By choosing appropriate pair of input/output nodes, we can
estimate eigenfrequencies.
This means we can estimate the eigenvalues of the original
asymmetric Laplacian matrix, that describe the structure of
directed networks.
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Conclusions

Oscillation model for describing propagation of activities on NWs.
Oscillation model can describe some kinds of asymmetric link
interactions by symmetric matrix.
Oscillation energy and kinetic energy give extended notion of the
well-known node centralities.
⇒ So, the proposed oscillation model might be the underlying
mechanism for describing different notions of node centrality by
using the common framework.

Conversely, can we know the structure of the networks by
observing the strength of nodes’ activity (centrality)?

Network resonance method — Eigenvalues can be estimated.
⇒ If we also estimate eigenvectors, we can reconstruct the
Laplacian matrix.
⇒ The estimation of the structure of hidden networks that cannot
be observed directly.
ex) user networks (strength of friendship, etc.),

network structure of malicious users that generate cyber attacks,
etc.
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Thank you for your attention!
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