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Abstract—We describe a very simple feedback con-
troller for stabilizing unknown unstable steady states
of dynamical systems. The feedback loop contains an
unstable first order high-pass filter. The controller is
reference-free. It does not require knowledge of the lo-
cation of the states in the phase space and is suitable
not only for fixed steady states but for slowly vary-
ing states as well. As a specific example we consider
the damped Duffing-Holmes type oscillator and inves-
tigate it analytically, numerically and experimentally.
Experiments have been performed using a simplified
version of the electronic Young-Silva circuit imitating
dynamical behavior of the Duffing-Holmes system.

1. Introduction

Many techniques for stabilization of unstable pe-
riodic orbits (UPOs) of dynamical systems are
overviewed in [1, 2]. The problem of stabilizing un-
stable steady states (USS) is also of great importance,
especially in engineering applications. Simple control
methods of stabilizing nonoscillatory states, e.g pro-
portional feedback technique require as a reference
point the coordinates of the USS. In many practical
cases the location of the USS is either unknown or
it slowly varies with time because of changes in the
ambient conditions. Therefore adaptive, reference-free
methods automatically locating the USS are prefer-
able.

The simplest adaptive technique for stabilizing USS
is based on derivative controller. A perturbation in
the form of a derivative dx/dt derived from an observ-
able x(t) does not change the original system, since
it vanishes when the variable approaches the steady
state x(t) = const. [3, 4, 5].

Another adaptive method for stabilizing USS em-
ploys low-pass filter in the feedback loop [6, 7, 8, 9].
Provided the cut-off frequency of the filter is low
enough, the filtered image v(t) of the observable x(t)
asymptotically approaches the USS and therefore can
be used as a reference point in the proportional feed-
back. This method has been successfully applied to

several experimental systems, including electronic cir-
cuits [6, 7] and lasers [8], also to control unknown un-
stable spirals in the Lorenz system [9]. However, if an
USS is neither a node nor a spiral but a saddle (char-
acterized by an odd number of real positive eigenval-
ues) the conventional filter technique does not work.
More sophisticated controllers involving unstable low-
pass filters should be used. The idea of using auxil-
iary unstable degree of freedom in the feedback loop
has been introduced in [10] in a slightly different con-
text and has been experimentally verified for stabiliz-
ing torsion-free UPOs (characterized by an odd num-
ber of real positive Floquet exponents) of autonomous
[11] and nonautonomous [12] dynamical systems. Un-
stable low-pass filter has been also demonstrated to
be useful for stabilization of the saddle type USS as
well [13, 14]. Simulations and experiments have been
carried out for an electrochemical oscillator [13], stud-
ied analytically and numerically for the case of the
saddles in the mechanical pendulum and the Lorenz
system [14].

In this paper, we demonstrate that an unstable high-

pass filter can be applied to stabilize saddles in the
Duffing type system. Using high-pass filter instead of
low-pass filter makes the controller technically simpler.
We note that a high-pass filter (a stable version) has
been used already to stabilize a laser [15]. However,
since it is a stable filter, it is unable to control saddles.
In addition to the fixed USS we investigate the case of
slowly varying USS.

2. Electronic Circuit and Equations

Full circuit diagram of the experimental setup is
shown in Fig. 1. An electronic circuit imitating dy-
namics of the Duffing-Holmes oscillator is composed
of the elements OA1, R1...R3, R, L, C, D1 and D2.
Actually it is a simplified version of the Young-Silva os-
cillator used to demonstrate stabilization of the UPO
[12] and characterized in more details in [16]. The rest
of the circuit is a controller. The OA2 stage is a buffer.
The OA3 stage is a negative impedance converter. It
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Figure 1: Duffing-Holmes circuit with an unstable con-
troller in the feedback. R1 = 1 MΩ, R2 = 100 kΩ,
R3 = R4 = R9 = R10 = 10 kΩ, R5...R8 = 20 kΩ (R7, R8

adjustable, used to set the gain k = R8/R9 + 1), L = 19
mH, C = 470 nF. OA1...OA3 – LM741; D1, D2 – 1N4148.
S1.1–S1.2 is an electronically controlled double switch. R
and C1 are specified in the captions to Figs. 5,6.

introduces negative resistance R− (if R7 = R8 then
R− = −R9) and makes the high-pass RfCf filter un-
stable. Here Rf = −R9||R6 = −R6R9/(R6 − R9),
Cf = C1. Location of the USS can be varied by means
of the DC voltage V0 and the AC voltage V1(t).

The closed-loop circuit is described by

ẋ = y, (1)

ẏ = −by + F (x) + ξ(t) + k(u − x), (2)

u̇ = ωf (u − x). (3)

Here ξ(t) = ξ0 + ξ1sin(ω1t), F (x) is approximated by
three-segment piecewise linear function:

F (x) =







−(x + 1), x < −0.5
x, −0.5 ≤ x ≤ 0.5

−(x − 1), x > 0.5
(4)

Here b is the damping coefficient of the Duffing-Holmes
oscillator, ξ0 and ξ1 are unknown DC and AC biasing
parameters, respectively. The ω1 << 1 is the nor-
malized frequency of the slow AC perturbation, ωf is
the normalized cut-off frequency of the high-pass filter.
The variables and parameters are given by

x =
VC

1V
, y =

ρIL

1V
, u =

VC1

1V
, ρ =

√

L

C
, (5)

b =
R

ρ
, ω1 = Ω1

√
LC, ωf =

√
LC

|Rf |Cf

. (6)

3. Linear Analysis

In this Section we assume for simplicity that ξ1 = 0.
When the feedback is OFF (k = 0) and the DC biasing
force ξ0 is not too large (|ξ0| < 0.5) Eqs. (1,2) have
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Figure 2: Dependence of the real part of the eigenvalues
Reλ on the control gain k from Eq. (10). b = 0.1, ωf =
0.03.

three real steady state solutions (x0, y0) = (x01,02,03, 0)
with x01 = ξ0 − 1, x02 = −ξ0, x03 = ξ0 + 1. Two of
them, with x01 and x03 are stable, while the middle
one with x02 is a saddle type unknown USS.

Let us consider the steady states and their stabil-
ity properties of the system under control (k > 0).
The x- and y-projections of the steady states remain
unchanged in the case of the closed loop (the u-
projections coincide with the x-projections). However,
the originally unstable state (x0, y0) with x02 under
certain conditions can become a stable steady state
(x0, y0, u0) = (x02, 0, x02). To check the stability of
the system we linearize Eqs. (1-3) around (x02, 0, x02):

ẋ = y, (7)

ẏ = −by − (k − 1)x + ku, (8)

u̇ = ωf (u − x). (9)

and analyse its characteristic equation

λ3 + (b − ωf)λ2 + (k − 1 − bωf )λ + ωf = 0. (10)

The system is stable if all the real parts of three eigen-
values of the Eq. (10) are negative. This can be
checked using the Routh-Hurwitz criteria. The eigen-
values Reλ1,2,3 are all negative if the diagonal minors
of the Routh-Hurwitz matrix are all positive:

∆1 = b − ωf > 0, (11)

∆2 = (b − ωf )(k − 1 − bωf) − ωf > 0, (12)

∆3 = ωf∆2 > 0. (13)

These inequalities yield the following stability criteria:

0 < ωf < b, k > kth =
b

b − ωf

+ bωf . (14)

At small b the threshold gain kth ≈ b/(b − ωf). For
example, at b = 0.1 and ωf = 0.03 the gain kth ≈ 1.43.
The |Reλ| has a maximum at kopt ≈ 2.3 (Fig. 2).
Note, that kth in Fig. 2 well coincides with the value
obtained from the Routh-Hurwitz criteria.
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4. Numerical Results

Results obtained by means of numerical integration
of Eqs. (1-3) are shown in Figs. 3,4. The main differ-
ence between the results in Fig. 3 and the investiga-
tions in [13, 14] is in the following. The electrochemical
oscillator [13], the pendulum, and the Lorenz system
[14] all exhibit oscillating behavior, either periodic or
chaotic before the control is turned on. While the con-
trol of the system in Fig. 3 is started from the stable
steady states (either stable spirals or stable nodes).
Although it is stated nowhere in the text of [13, 14],
the presented illustrations of originally oscillating sys-
tems give an inadequate impression that a saddle point
can be stabilized if it is approached by the trajectories
of the limit cycles or trajectories of chaotic attractors.
In our case the original steady states and the USS are
fixed and rather remote objects in the phase space. In
addition, the simulations of the over-damped system
(bottom plot in Fig. 3) show that in order to switch
from a stable state to a saddle it is not necessary even
for the transient trajectories to twist around the USS.
In contrast, the target can be reached point-blank.

In addition, we demonstrate in Fig. 4, that slowly
varying states can also be controlled by means of the
unstable high-pass filter.
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Figure 3: Stabilizing the unstable state of the Duffing-
Holmes oscillator from Eq. (1) with k = 2, ξ0 = −0.3,
ξ1 = 0. Top: b = 0.1, ωf = 0.03. Bottom: b = 2, ωf =
0.1. Upper traces in the top and bottom plots is the main
observable x, lower traces (shifted down by 4 for clarity) is
the control term k(u−x). Control is turned on at t = 100.
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Figure 4: Stabilizing the slowly varying state of the
Duffing-Holmes oscillator from Eq. (1-3) with k = 3,
ξ0 = 0, ξ1 = 0.2, Ω1 = 0.03. b = 2, ωf = 0.4. Upper
trace is the main observable x, lower trace (shifted down
by 2 for clarity) is the control term k(u − x). Control is
turned on at t = 1000.

5. Experimental Results

Experimental photos taken from the screen of a mul-
tichannel oscilloscope are presented in Figs. 5,6. Ex-
perimental results are in a good agreement with the
numerical simulations.

1V 5 ms

0

1V 5 ms

0

Figure 5: Experimental control of the steady states of
the Duffing-Holmes electrical circuit shown in Fig. 1 with
R7 = R8 = 10 kΩ (k = 2), Rf = −20 kΩ, V0 = 30
V, V1 = 0. (Top) R = 20 Ω (b = 0.1), C1 = 330 nF
(ωf = 0.03); (bottom) R = 400 Ω (b = 2), C1 = 100 nF
(ωf = 0.1). Upper traces in the top and bottom photos is
the main signal VC ∝ x, lower traces is the control signal
Vcontr ∝ −k(u − x) taken from the OA3.
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1V 10 ms

0

Figure 6: Experimental control of slowly varying state of
the Duffing-Holmes electrical circuit shown in Fig. 1 with
R7 = R8 = 20 kΩ (k = 3), V0 = 0, V1 = 2 V, f1 = 50 Hz
(Ω1 = 0.03). R = 400 Ω (b = 2), Rf = −20 kΩ, C1 = 13
nF (ωf = 0.4); Upper trace is the main signal VC ∝ x,
lower trace is the control signal Vcontr ∝ −k(u − x) taken
from the OA3.

6. Conclusion

We have demonstrated the efficiency of an adaptive
control technique using unstable high-pass filter to sta-
bilize saddle type steady state in a dynamical system.
The controller automatically locates unknown and/or
slowly varying unstable state and uses it as a reference
point in the proportional feedback.
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[11] K. Höhne, H. Shirahama, Ch.-U. Choe, H. Ben-
ner, K. Pyragas, and W. Just, ”Global proper-
ties in an experimental realization of time-delayed
feedback control with an unstable control loop,”
Phys. Rev. Lett., vol.98, pp.214102–1–4, 2007.
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