

Measurement and Analysis of a CMOS Chaotic Spiking Oscillator Circuit That Acts as a Filter of Spike Trains

Masatoshi Yamaguchi[†], Seiji Uenohara[†], Takashi Morie[†], Hakaru Tamukoh[†] and Kazuyuki Aihara[‡]

†Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2–4 Hibikino Wakamatsu-ku, Kitakyushu 808–0196, Japan ‡Institute of Industrial Science, The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan Email: morie@brain.kyutech.ac.jp

Abstract—

We have designed and fabricated a CMOS circuit that implements a chaotic spiking oscillator model, which acts as a filter of spike trains. This model is a phase oscillator that outputs a spike pulse at the timing of a predefined phase value, and transforms its phase value with a nonlinear transformation function at the timing of spike inputs. We have evaluated the fabricated circuit as a spike-train filter and show the measurement results for verifying the circuit operation. In addition, we show the difference between the measurement results of the fabricated circuit and the numerical simulation results of the model.

1. Introduction

Many oscillator models were proposed as a simple neuron model and a mathematical model expressing synchronization phenomena [1, 2, 3, 4]. The pulse-coupled oscillator model expresses information using pulse timing [4]. This model was implemented by discrete electronic circuits [5, 6, 7], CMOS integrated circuits [8] and FPGA

We have already proposed a chaotic spiking oscillator model that acts as a filter of spike trains [10]. This model can express various information by using the input-spike interval as a bifurcation parameter, and outputs various spike-train patterns including non-output states. In addition, this model can act as a low pass filter, a band stop filter and a filter combining both characteristics by varying the firing threshold.

We have designed and fabricated a CMOS circuit that implements this oscillator model using TSMC 0.25 μ m CMOS technology. In this paper, we show that evaluation results of the fabricated circuit.

2. Chaotic spiking oscillator model

This oscillator model is expressed by the following equations [10]:

$$x = \omega t \bmod x_{ret} \tag{1}$$

$$x = \omega t \mod x_{rst}$$

$$S_{out} = \begin{cases} 1 & \text{if } x = x_{th} \\ 0 & \text{if } x \neq x_{th} \end{cases}$$

$$(2)$$

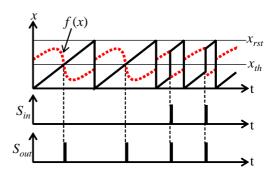


Figure 1: Timing diagrams of chaotic spiking oscillator model.

$$x \rightarrow f(x) \text{ if } S_{in} = 1$$
 (3)

where x is the internal state, ω the natural frequency, t continuous time, x_{rst} the resetting threshold for the internal state, x_{th} the firing threshold, and $f(\cdot)$ the nonlinear transformation function. Binary state S_{in} and S_{out} represent input and output spike timing, respectively.

Timing diagrams of this oscillator are shown in Fig. 1. We employed the chaotic neuron map [11] as $f(\cdot)$. Internal state x increases monotonically with ω , outputs spike S_{out} when x exceeds x_{th} and is reset to zero when x reaches x_{rst} . When no spikes input, which means $S_{in} = 0$, this oscillator fires and outputs spike with constant period x_{rst}/ω .

When spikes input $(S_{in} = 1)$, the oscillator converts x into f(x). As a result, the inter-spike interval of S_{out} is changed nonlinearly, and depends on the timing of inputspikes. In addition, the oscillator cannot fire and output spikes when x continues to be mapped in a range of $x < x_{th}$ or $x > x_{th}$.

3. CMOS circuit of chaotic spiking oscillator

Our oscillator circuit consists of a capacitor C_x , an oscillator circuit (OSC) part and a nonlinear voltage generator circuit (NVG) part, as shown in Fig. 2. The C_x holds the internal state voltage V_x at node P_x . The OSC charges or discharges C_x , and outputs spike S_{out} when the V_x exceeds

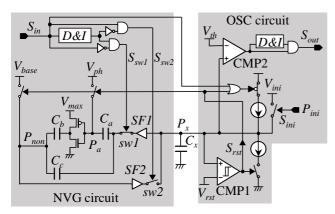


Figure 2: CMOS circuit of chaotic spiking oscillator.

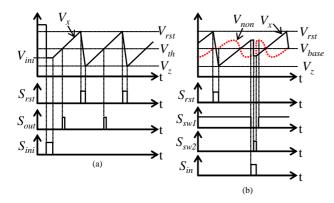


Figure 3: Timing diagrams of chaotic spiking oscillator circuit: (a) OSC part and (b) NVG part.

 V_{th} . The NVG converts the V_x into nonlinear voltage V_{non} at node P_{non} when spikes input: $S_{in} = 1$. Timing diagrams of the circuit are shown in Fig. 3.

3.1. Operation of OSC circuit

The OSC circuit consists of two switched-current sources that charge or discharge C_x , a hysteresis comparator (CMP1) that compares V_x with resetting threshold voltage V_{rst} and outputs reset signal S_{rst} , a comparator (CMP2) that compares V_x with threshold voltage V_{th} and a delayand-inversion circuit (D&I) and an AND gate that generates S_{out} . The circuit operation is as follows:

- 1) Voltage V_x is initialized at $V_{ini}(< V_{rst})$ by initialization signal S_{ini} , and the OSC begins to oscillate.
- 2) Capacitor C_x is charged by the current source and V_x increases with a constant speed.
- 3) When V_x exceeds V_{th} , the CMP2 output turns over, and output spike signal S_{out} is generated by a D&I and an AND gate.
- 4) When V_x reaches V_{rst} , the CMP1 outputs $S_{rst} = 1$ and V_x is reset to voltage V_z by the constant current source.
- 5) Repeat 2) to 4) when $S_{in} = 0$.

Table 1: Specification of a fabricated circuit

Technology	TSMC 0.25 μm CMOS
Layout area	$137.43 \times 155.4 \mu\text{m}^2$
Power supply voltage	3.3 V
Operating frequency (ω)	0.2 Hz-713 kHz
Power consumption	589 μW (at $ω = 167$ kHz)

Here, the time span of $S_{rst} = 1$ is determined by the hysteresis characteristic of CMP1, and V_z is determined by the time and the current for discharging C_x from V_{rst} .

3.2. Operation of NVG circuit

The NVG circuit consists of two source-follower analog buffers SF1 and SF2, three capacitors C_a , C_b and C_c , a CMOS inverter, two switches sw1 and sw2, a delay-and-inversion circuit (D&I), two AND gates and two NOT gates. This circuit generates nonlinear voltage V_{non} at node P_{non} by adding V_x to the CMOS inverter output voltage that is generated from V_a at node P_a . Nonlinear voltage V_{non} and V_a are set to V_{base} and V_{ph} by reset signal S_{rst} , respectively. As a result, the voltage and phase of V_{non} are shifted by V_{base} and V_{ph} , respectively.

The sw1 and the sw2 are switched by signals S_{sw1} and S_{sw2} that are generated from S_{in} as follows:

- 1) Switch sw1 is turned off by $S_{sw1} = 0$. Then, C_b and C_c generate V_{non} that is determined by V_x at the timing when S_{in} becomes "High".
- 2) After sw2 is turned on by $S_{sw2} = 1$, the voltage held at C_x at node P_x is varied from V_x to V_{non} .
- 3) Switch sw2 is turned off by $S_{sw2} = 0$.
- 4) Switch sw1 is turned on by $S_{sw1} = 1$.

Here, the intervals 1)-2) and 3)-4) are determined by the D&I circuit.

Consequently, V_{non} is given by the following equation:

$$V_{non}(t) = \frac{C_b u(V_x(t) - V_z + V_{ph}) + C_c V_x(t)}{C_b + C_c} + V_{base} - \frac{C_b u(V_{ph}) + C_c V_z}{C_b + C_c}$$
(4)

where $u(\cdot)$ is the input-output characteristic of the CMOS inverter. Note that the maximum value of $u(\cdot)$ is determined by the supply voltage V_{max} of the CMOS inverter.

4. Measurement and analysis

We designed and fabricated the CMOS circuit using TSMC 0.25 μ m CMOS technology, where we set C_b = 289 fF and C_c = 900 fF. The specification of the fabricated circuit is shown in Table 1.

We investigated the relationship between inter-spike intervals of S_{out} , T_{out} , and a fixed inter-spike interval of S_{in} ,

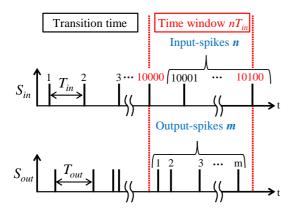


Figure 4: Measurement condition for input and output spikes.

 T_{in} , and that of the firing rate m/n and T_{in} , where n and m are the numbers of input and output spikes during the time span of the measurement period, respectively. Namely, the time-window for measurement is nT_{in} , as shown in Fig. 4. The measurements were performed after giving 10,000 input-spikes that is assumed to be transition time. We set here n=100, $V_{max}=3.3$ V, $V_{ph}=0.96$ V, $V_{base}=1.70$ V, $V_{rst}=2.2$ V and $(V_{rst}-V_z)=1.0$ V.

Measurement results about T_{out} and m/n are shown in Fig. 5, when we change T_{in} from 268 ns to 7000 ns at a step of 4ns. We set here $V_{th} = 1.635$ V. From Fig. 5, we can observe some chaotic behaviors in the bifurcation phenomena.

Measurement results about m/n are shown in Fig. 6, when T_{in} and V_{th} are changed from 268 ns to 6988 ns at a step of 40ns and from 1.185 V to 2.135 V at a step of 0.025 V, respectively. We see from Fig. 6 that the oscillator acts as the following filters: a low-pass filter at $V_{th} = 1.260$ V, a band-stop filter at $V_{th} = 1.860$ V and a filter combining both characteristics at $V_{th} = 1.410$ V.

We found from Fig. 5(a) that the measurement results are different from those of numerical results around $T_{in} = 4000$ ns. The reason of this difference is discussed below.

The proposed model [10] assumes that fall time T_f is negligibly small, as shown in Fig. 7(a). However, the fabricated circuit has a finite T_f , as shown in Fig. 7(b). We investigated an influence of the fall time at $V_{th} = 1.635 \text{ V}$ and $T_{in} = 3700 \text{ ns}$. Figure 8 shows time-series of V_x , V_{non} , S_{in} and S_{out} observed in an oscilloscope, where some of the input spikes S_{in} were fed into the circuit during the falling periods of V_x .

We also investigated the influence by comparing the case of $T_f = 0$ with that of $T_f = T_n/13$ by numerical simulation, where T_n is the natural period, that is the inverse of ω . Nonlinear function $f(\cdot)$ is based on the chaotic neuron map, as descried in Sec. 2:

$$f(x) = 0.54x + 0.57/[1 + \exp\{(x - 0.5) * 60\}] - 0.11$$
 (5)

where *x* is in the range of $0 \le x \le 1$. We set here $x_{th} = 0.47$.

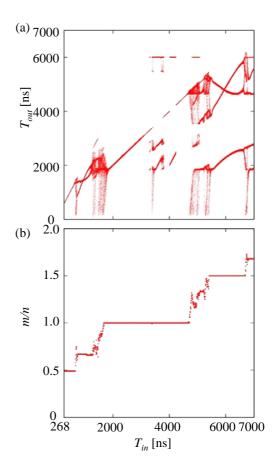


Figure 5: Output-spike interval T_{out} and firing rate m/n as a function of T_{in} , where we set $V_{th} = 1.635$ V.

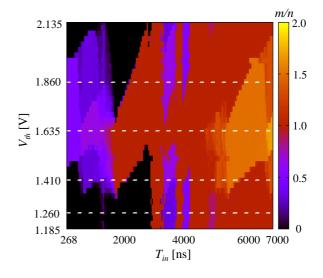


Figure 6: Firing rate m/n when T_{in} and V_{th} are changed.

The numerical simulation results are shown in Fig. 9. We can see the difference between the two, and the result with finite T_f (Fig. 9(b)) is more similar to the measurement result (Fig. 5(a)) than the ideal result (Fig. 9(a)).

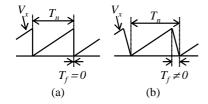


Figure 7: Definition of fall time T_f and natural period T_n : (a) ideal model and (b) model including the fall time.

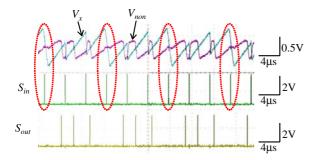


Figure 8: Time-series of V_x , V_{non} , S_{in} and S_{out} observed in an oscilloscope, where $T_{in} = 3700$ ns.

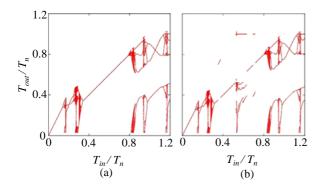


Figure 9: Numerical simulation Results about the relationship between T_{in}/T_n and T_{out}/T_n , where $x_{th}=0.47$: (a) $T_f=0$ and (b) $T_f=T_n/13$.

5. Conclusions

We evaluated the fabricated CMOS circuit of a chaotic spiking oscillator as a spike-train filter and showed the measurement results for verifying the circuit operation. We showed that the fabricated circuit exhibits bifurcation phenomena by varying input-spike interval and acts as a low pass filter, a band stop filter, and a filter combining both characteristics by varying the firing threshold. In addition, we confirmed that the fall time influences the bifurcation characteristics by showing results of the numerical simulation. In future work, we will construct an oscillator network consisting of the fabricated CMOS circuits, and will conduct experiments about network operation.

References

- [1] Y. Kuramoto, *Chemical oscillations*, waves, and turbulence. Springer-Verlag (Berlin and New York), 1984.
- [2] A. T. Winfree, *The geometry of biological time*. Springer, 2001, vol. 12.
- [3] R. Perez and L. Glass, "Bistability, period doubling bifurcations and chaos in a periodically forced oscillator," *Physics Letters A*, vol. 90, no. 9, pp. 441–443, 1982.
- [4] R. E. Mirollo and S. H. Strogatz, "Synchronization of pulse-coupled biological oscillators," *SIAM Journal* on *Applied Mathematics*, vol. 50, no. 6, pp. 1645– 1662, 1990.
- [5] K. Mitsubori and T. Saito, "Mutually pulse-coupled chaotic circuits by using dependent switched capacitors," *IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications*, vol. 47, no. 10, pp. 1469–1478, 2000.
- [6] H. Nakano and T. Saito, "Grouping synchronization in a pulse-coupled network of chaotic spiking oscillators," *IEEE Trans. Neural Networks*, vol. 15, no. 5, pp. 1018–1026, 2004.
- [7] Y. Matsuoka, T. Hasegawa, and T. Saito, "Chaotic spike-train with line-like spectrum," *IEICE trans. Fundamentals.*, vol. 92, no. 4, pp. 1142–1147, 2009.
- [8] K. Matsuzaka, T. Tohara, K. Nakada, and T. Morie, "Analog CMOS circuit implementation of a pulsecoupled phase oscillator system and observation of synchronization phenomena," *Nonlinear Theory and Its Applications, IEICE*, vol. 3, pp. 180–190, 2012.
- [9] Y. Suedomi, H. Tamukoh, M. Tanaka, K. Matsuzaka, and T. Morie, "Parameterized digital hardware design of pulse-coupled phase oscillator model toward spikebased computing," in *Proc. 20th Int. Conf. on Neu*ral Information Processing (ICONIP2013), 2013, pp. 17–24
- [10] S. Uenohara and T. Morie, "A chaotic spiking oscillator that acts as a filter of spike trains," in *Int. Symp. on Nonlinear Theory and its Applications (NOLTA2014)*, 2014, pp. 723–726.
- [11] K. Aihara, T. Takabe, and M. Toyoda, "Chaotic neural networks," *Physics letters A*, vol. 144, no. 6, pp. 333–340, 1990.