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Abstract—A S encoder is an analog-to-digital (B)

; voltage
converter, that outputs a truncated sequengeexfpansion __| /Ehard‘fiafe — a,a,a;..—| Payebiy | b, b,b,
. encoder i
of an input valuex. We recently proposed a method for o
generating sequences of random numbers using a hardware y )\ v /
B encoder followed by @-ary to binary converter. This This part is considered Calculate the binary expansion
as an information source. of the interval identified by a’

paper gives the performance analysis of the random num- " ]
ber generation in terms of the variational distance between Figure 1: A block diagram of the proposed method.

the target distribution and the distribution of the output serq; 5 fixedx aa,--- are not unique. In fact, there are

quence and the expected length of the input sequence Rffinitely many ways to expang. This implies that digi-
one output symbol. tal codes produced by @encoder are redundant. Unlike
PCM, an erroneous decision made bg ancoder can be
recovered by the following bits. Thus,gencoder is ro-
bust to fluctuation of threshold value of a quantizer. Such
There are two major schemes for Analog—to—Digitalaﬁ e_ncpder does not need high—pre.cisi.on pircuit elements
(A/D) converters: pulse code modulation (PCM) akdl and is implemented by an'electromc circuit that achieves
modulation. In case of PCM, the continuous-time signaf®y small area consumption as well as low power con-
is sampled at a rate higher than Nyquist rate. The sarymption [2]. _
ples are, then, quantized to the truncated binary expansiona’Vé Observe chaos attractors gnconverters [3]. This

of the samples. The quantization error is upper boundd@ict motivated Hirata et.al [4] to use /& encoder as a
by C - 2N with some constan€, whereN is the length random number generator. However, outputs from a

of the binary expansion. However, this upper-bound cargncoder have strong correlations bet_vvgen successive bits.

not be guaranteed i becomes very large. One of the Such strong correlations should be eliminated. Then, M_at-

reasons is that the PCM method is sensitive to the varig¥mura et.al [5] proposed another method for generating

tion in the comparator voltagefiset. Once a comparator & S€quence of random numbers using encoder. This

makes an erroneous decision at some bit, the error canBgtn0od employs g-ary to binary converter (See Fig. 1).

be recovered by the following bits. On the other hatud, This paper F_JfOVIdeS perfqrrr_lance gnaly3|s of the pro-

modulations are robust to fluctuations of threshold valud°Sed method in terms of variational distance as well as the

in their quantizers. However, they require a very high ove/2XPecteéd length of input sequence per an output symbol.

sampling rate. This implies th&A modulation can only

be used in narrow-bandwidth applications. Moreover, thg. 8 encoder

guantization error oEA modulation decreases in inverse ] ]

proportion to the number of bits in contrast to the exponen- 1 he/ expansion of a real numbere [0, 1/(3 — 1)] with

tial accuracy of the PCM. Be(L2)is def|.ned by (1). "rhe'set of cﬁie!ents{a;} in (1)
Daubechies et.al [1] proposed a neyDAconverter that 7€ called cautious expansiorajfis determined as follows:

is based on thg expansion of a real number and, thereforepafinition 1 Cautious expansion with a threshold e

is called thes encoder. Thg expansion of a real number 1, Al) of a real number x [0, Al) is defined recursively
x € [0,1/(8 - 1)] with 8 € (1, 2) is defined by A A

1. Introduction

by
¢ i Qi1 = Qv(ﬁ)q)» i=01,..., (2)
= B, & €{0,1}. 1
X ;aﬂ a €(0,1) 1) Yot = Con () )

This research was supported in part by the Aihara Project, the FIRS\QIhere CB"’ is the cautioug map, defined by

program from JSPS, initiated by CSTP and JSPS KAKENHI Grant Num-
ber 25820162. Cp(X) = BX = Q,(BX). 4
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on : sampling phase

The map G,(x) is called greedy ifr = 1 and lazy ify = off: amplifying phase

1/(B-1). s(®) | I X B 0,0) a,
Definition 2 The (8, a)-transformation }, : [0,1) — e
[O, 1) |S deflned by [6] off:.sanfp]izgr%lslse
Delay () (B-1)
Tgo(X) =BX+amodl, >1,0<a <l (5) TN

It can be known that we havg(Cs, (¢ (X)) = T (X),
wherep~1(x) = x+a/(8-1). The most important property
of thepg map is that there is a unigue absolutely continuous et X e [0,1) be an input for the scale-adjustgden-

Figure 2: Scale-adjusteggiencoder withs = 1.

invariant probability measure [6]. coder. The output sequence fois(See Fig. 2)
Theorem 1 (Parry [6]) An unnormalized invariant mea- a1 =Q,(Bx), i=01,... (12)
sure for Tz, (X) is given as X1 = S (X) X0 = %. (13)
hog= > "= > " (6) Then, we have= (8 — 1) 5=, a8~ As shown in Fig. 3,
*<Tg, (1) x<Tg,(0) Xn = ng(xo) does not diverge if the threshold valuesat-

] ) ) isfiesv € [8 - 1,1]. Since the exact valuein a circuit
Remark 1 Suppose that we ignore the firstand consider s not known,v can be considered a random variable dis-
8n+18n:28n+3 -+ - It should be noted that from this sequencgyip e in a rangesp, v1]. In this casex, does not diverge

we obtain ¥ = ¥, aB~'. Theorem 1 implies tha"fﬂ ~ if vo > B-1andv; < 1. This property makes thiencoders
a/(B — 1)} tends to follow Parry’s absolutely continuous ,nst to the fluctuations of the threshold.
invariant density fx) for almost all initial values x= Xo.

y:Sl[f,v(x)
Daubechies et.al [1] pointed out that the valraay dif- ,
fer from one application to the next and introduced a flaky v
version of an imperfect quantizer, defined by P
0, if X< v,
Qg (0 =141, if x> v, (7) .
Oorl IfXE(Vo,Vl). }zﬂx = P (f-1
This notation means that for € (vg, v1) we do not know oo p
which value in{0, 1} the flaky quantizer will assign.
Daubechies et. al [1] gave the following theorem that

guarantees the exponential accuracy of the quantization er- 0
ror made by @ encoder with a flaky quantizer.

v [

Theorem 2 (Daubechies et.al [1])For B € (1,2), X € Figure 3: A map of the scale-adjust@anap withs = 1.
[0,1),1 < vg <v1 <1/(B-1), define

bif+l _ Q{v V](Bxif)’ =012, 8) For almost all initial valgesq, € _[O,.l), Xn generated
; f°’ 8 . ] ; by Eq. (13) does not fall into periodic points but stays
Xir1 = BXs1 = Quer)(BX), %o =X (9)  within a range. Attractors are observed in the dynamics

of B encoders and are referred to @agxpansion attrac-

tors [3]. Such an attractor can be considered as an informa-
N tion source. The connection between information sources

0< X— Z bifﬁ*i <vig N (10) and the chaotic dynamics is discussed in [7].
i=1

Then for all Ne N,

) ) 2.1. The proposed method
In what follows, we consider a scale-adjusgeéxpan-

sion of X = (8 — 1)x € [0, 5], wheresis a scale parameter We recently proposed a method for converting a binary

andg € (1, 2). For simplicity, assume = 1. sequence generated frong @ncoder to another binary se-
quence that is approximately regarded as independent and
Definition 3 The scale-adjustefl map of scale one, & : identically distributed (i.i.d.) random variables [5]. The
[0,1) — [0,2) for v € [(B — 1), 1] is defined by proposegb-ary to binary converter should be implemented
in a digital circuit. Therefore, we have developed a fixed-
Spy(X) = Bx = (B - 1)Q,(BX). (11)  point arithmetic with limited precision for the interval al-
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Expected length of input sequence per one output symbol

gorithm, which is similar to the methods discussed by Uye- ‘

matsu and Li [8]. A real number € [0, 1) with unlimitted 16 T
precision is rounded down to a fixed point numlsgz", s bea=1.9 e
t€(0,1,...,2" - 1}, wherew is called a word length. T

[The B-ary to binary conversion algorithm [5]]

E[MV/n

1. Letn be the number of output symbols we shall gen-

erate. Leu — J — l, k — O, |/ — 0, U, — 2W _ 1, and 12 . ——
v = Lzﬁ—wj, and|x] denotes the smallest integer greater [ — N R ————
than or equal tox. 100 1000
2. Reads;. If 3 = 0, then update Figure 4: The expected length of the input sequence per
=+ [(u;vl’).y + %J (14) one output symbol.

Theorem 3 (Han and Hoshi [11]) Let A and 8 be finite

If & =1, then update > De TR
sets. Letp = {p(a)} andq = {q(b)} be probability distri-

I=u- | Y502+ ] (15) butions onA and B. LetE[M] be the expected number of
tosses required to simulate an i.i.d. random sequence of
3. (@ If: <L <Z1and} < & < 2, then update length n subject to the distributiap Then, we have

¢ =20 -1 u=20-2""1 andk = k+ 1.

(b) If % < L, then outpubybj.s by = O1.--1 nHH(q) <EM) < _nH(q) N log,(2(lAl - 1))
and updatk = 0, ¢ = 20/, U = 2, andj = () H(p) H(p)
j+k+1. + h(Pmax) i (16)
(c) If & > 3, then outpubjbj,s---bj = 10---0 (1= Prnax)H ()
and updatk = 0,1 = 2" = 2% " = 20" = 2%, where phax = Maes P(@), H(p) = ~ Saca P(8) log, p(a)
andj=j+k+1. is the entropy, and(p) = —plog, p— (1 - p) log,(1 - p) is

4. If j = n, then letm = i and quit. Otherwise, update the binary entropy.

i =i+ 1and go back to Step 2. In the g-ary to binary conversion algorithm, the target

Note thatmis the number of input symbols required to gendistribution isq(0) = q(1) = 1/2 so that we havel(q) = 1
eraten output symb0|s and that depends offa}. Because See [10] for a theoretical framework of random num-
of the truncation operations in Egs. (14) and (15), the distrPer generation in information theory, where asymptotic ap-
bution of the generated sequence is deviated from the targg@ximation problems are considered in which the target

distribution. The &ect of the word lengtwis left to be an- random numbers are generated approximately within an ar-
alyzed. bitrarily small torelance in terms of variational distance.

_ _ Definition 4 (Variational Distance) Let ¢ = {q(b)} and
3. The Random Number Generation Problemin Infor- 5 = (¢(b)} be probability distributions on a finite se.

mation Theory The variational distance betwegmand g is defined by

By the g-ary to binary converter, shoyvn in Fig. 1, we d(g, §) = Z la(b) — &(b)| 17)
try to generate a sequence lmh, - - - which is regarded —
as an i.i.d. random process from an input sequeneg
which is not an i.i.d. process. The problem of simulat-
ing a prescribed target distribution by repeating tosses ofa Numerical Results
coin with a given probability is known asrandom number
generation problenmn information theory [10]. Knuth and ~ The performance of the random number generation us-
Yao [9] have investigated the problem of random numbeng 3 encoder ang-ary/binary converter is evaluated. In
generation for simulating an arbitrary target distribution byhe proposed method, a hardwgrencoder is used. How-
successive tosses of an unbiased coin. ever, in this studyp encoder is simulated by a computer
Han and Hoshi [11] proposed a deterministic algorithmprogram. Fig. 4 shows the expected length of input sym-
called the interval algorithm, that generates target randohols per one output symbol. Simulation results shows that
sequences of fixed length from a prescribed informatiok[M]/n approaches to the valq-g;— from above. This re-
source by use of random coin sequences of variable lengghlt shows that the proposed methodfiscéent in terms of
from a given information source. The interval algorithmthe conversion rate.
is based on the successive refinement of partitions of theFig. 5 shows the histograms of the generated output se-
unit interval [Q 1). They gave a tight upper bound on thequenceb; - - - bs. In this simulation,K = 32 000 input
expected number of tosses: signals, defined bx® = k/K, k = 0,1,...,K — 1, are
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Figure 5: Histogram of the generated binary sequen

bib, - - - bs. The horizontal axis showis= Z]Zl b; 2571
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Figure 6: Variational distance between the uniform distri—4
bution and the distribution of the output sequence. Hort

zontal axis shows the length of the input sequemce. a.

used to generate® = al¥ ... a{y). Then, for eactu®, -

aryhbinary converter giveb{ - -- b, where the length of 5]
output signals is fixed ta = 5. The lower graph is much
closer to uniform distribution than the upper one. Figure 6
shows that the variational distance between the unifor

distribution and the empirical distribution fdJ(lk)-‘-bEIk)
decreases exponentially asncreases.
We have so far assumed that phealue in a hardwarg

encoder is known to thg-ary/binary converter. However,
it is one of the important properties gfencoders that the

Mismatch of beta value (True § = 1.8, n=5)
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Figure 7: The #ect of mismatch betweeghvalues used in
B encoder an@-ary/binary converter

variational distance between uniform distribution and the
distribution obtained by the proposed method. The conver-
sionrate, i.e., the expected length of input sequence per one
output symbol approaches to the valyddg, 8. We have
verified that the variational distance decreases exponen-
tially. Such results show thetiiency of the method [5].
Cﬁwe dfect of short word lengthv is left to be analyzed.

References

[1] I. Daubechies, R.A. DeVore, C.S.{@tirk, and V. A.
Vaishampayan, “AD Conversion With Imperfect Quantiz-
ers,”|IEEE Trans. Inform. Theorywol.52, no.3, March 2006.

[2] H. San et. al, “Non-binary Pipeline Analog-to-Digital Con-
verters Based oB-Expansion,1EICE Trans. Fundamentals,
vol.E96-A, no.2, pp. 415-421, Feb. 2013.

[3] T. Kohda, Y. Horio, K. Aihara, 8-Expansion Attractors Ob-
served in AD Converters,Chaos: An Interdisciplinary J. of
Nonlinear Sciencevol. 22, 047512, 2012

Y. Hirata, Y. Jitsumatsu, T. Kohda, and K. Aihara, “Pseudo-
Random Number Generator UsiAgExpansion Attractors in
A/D Converters,Proc. of the 30th Sympo. on Cryptography
and Information SecurityJan. 2013 (in Japanese).

K. Matsumura, T. Teraji, K. Oda, and Y. Jitsumatsu, “Ran-
dom Number Generation Using Encoder,” Proc. of the
32nd Sympo. on Cryptography and Information Security
Jan. 2015 (in Japanese).

'f%] W. Parry, “Representations for real numbérgcta Math.
Acad. Sci. Hungl5, 95-105, 1964.

[7] T. Kohda, “Information Sources Using Chaotic Dynamics,”
Proc. IEEE vol.90, no.5, pp.641-661, 2002.

[8] T.Uyematsu and Y. Li, “Two Algorithms for Random Num-
ber Generation Implemented by Using Arithmetic of Lim-

B value can fluctuate. It should be reasonable to assume ;.4 Precision”IEICE Trans. Fundam.vol.E86-A, no.10,

that there is a mismatch betwegrused in g3-ary/binary

converter, denoted kyand the trugs. In Fig. 7 shows that [9]

the variational distance does not approaches to zgre if
asmincreases.

5. Conclusion

pp.2542-2551, 2003.

D. Knuth, and A. Yao, “The complexity of nonuniform ran-
dom number generation,” Algorithm and Complexity, New
Directions and results, pp. 357-428, ed. by J.F.Traub, Aca-
demic Press, New York, 1976.

[10] T. S. Han,Information-Spectrum Methods in Information
Theory Springer, 2003.

The performance of a recently proposed random numbBrl T. S. Han and M. Hoshi, “Interval Algorithm for Random

generation method usimgyencoder withs-ary/binary con-
verter [5] is evaluated in term of the conversion rate an

Number Generation,IEEE Trans. on Inform. Theory3,
d pp.599-611, 1997.

514 -



	Navigation Page
	Session at a glance

