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Abstract—A β encoder is an analog-to-digital (A/D)
converter, that outputs a truncated sequence ofβ expansion
of an input valuex. We recently proposed a method for
generating sequences of random numbers using a hardware
β encoder followed by aβ-ary to binary converter. This
paper gives the performance analysis of the random num-
ber generation in terms of the variational distance between
the target distribution and the distribution of the output se-
quence and the expected length of the input sequence per
one output symbol.

1. Introduction

There are two major schemes for Analog-to-Digital
(A/D) converters: pulse code modulation (PCM) and∆Σ
modulation. In case of PCM, the continuous-time signal
is sampled at a rate higher than Nyquist rate. The sam-
ples are, then, quantized to the truncated binary expansions
of the samples. The quantization error is upper bounded
by C · 2−N with some constantC, whereN is the length
of the binary expansion. However, this upper-bound can-
not be guaranteed ifN becomes very large. One of the
reasons is that the PCM method is sensitive to the varia-
tion in the comparator voltage offset. Once a comparator
makes an erroneous decision at some bit, the error cannot
be recovered by the following bits. On the other hand,∆Σ
modulations are robust to fluctuations of threshold values
in their quantizers. However, they require a very high over-
sampling rate. This implies thatΣ∆ modulation can only
be used in narrow-bandwidth applications. Moreover, the
quantization error ofΣ∆ modulation decreases in inverse
proportion to the number of bits in contrast to the exponen-
tial accuracy of the PCM.

Daubechies et.al [1] proposed a new A/D converter that
is based on theβ expansion of a real number and, therefore,
is called theβ encoder. Theβ expansion of a real number
x ∈ [0,1/(β − 1)] with β ∈ (1,2) is defined by

x =
∞∑

i=1

aiβ
−i , ai ∈ {0,1}. (1)
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Figure 1: A block diagram of the proposed method.

For a fixedx, a1a2 · · · are not unique. In fact, there are
infinitely many ways to expandx. This implies that digi-
tal codes produced by aβ encoder are redundant. Unlike
PCM, an erroneous decision made by aβ encoder can be
recovered by the following bits. Thus, aβ encoder is ro-
bust to fluctuation of threshold value of a quantizer. Such
a β encoder does not need high-precision circuit elements
and is implemented by an electronic circuit that achieves
very small area consumption as well as low power con-
sumption [2].

We observe chaos attractors inβ converters [3]. This
fact motivated Hirata et.al [4] to use aβ encoder as a
random number generator. However, outputs from aβ
encoder have strong correlations between successive bits.
Such strong correlations should be eliminated. Then, Mat-
sumura et.al [5] proposed another method for generating
a sequence of random numbers using aβ encoder. This
method employs aβ-ary to binary converter (See Fig. 1).

This paper provides performance analysis of the pro-
posed method in terms of variational distance as well as the
expected length of input sequence per an output symbol.

2. β encoder

Theβ expansion of a real numberx ∈ [0,1/(β − 1)] with
β ∈ (1,2) is defined by (1). The set of coefficients{ai} in (1)
are called cautious expansion ifai is determined as follows:

Definition 1 Cautious expansion with a thresholdν ∈
(1, 1
β−1) of a real number x∈ [0, 1

β−1) is defined recursively
by

ai+1 = Qν(βxi), i = 0,1, . . . , (2)

xi+1 = Cβ,ν(xi), (3)

where Cβ,ν is the cautiousβmap, defined by

Cβ,ν(x) = βx− Qν(βx). (4)
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The map Cβ,ν(x) is called greedy ifν = 1 and lazy ifν =
1/(β − 1).

Definition 2 The (β, α)-transformation Tβ,α : [0,1) 7→
[0,1) is defined by [6]

Tβ,α(x) = βx+ α mod1, β ≥ 1, 0 ≤ α ≤ 1. (5)

It can be known that we haveφ(Cβ,ν(φ−1(x))) = Tβ,α(x),
whereφ−1(x) = x+α/(β−1). The most important property
of theβmap is that there is a unique absolutely continuous
invariant probability measure [6].

Theorem 1 (Parry [6]) An unnormalized invariant mea-
sure for Tβ,α(x) is given as

h(x) =
∑

x<Tn
β,α(1)

β−n −
∑

x<Tn
β,α(0)

β−n. (6)

Remark 1 Suppose that we ignore the first an and consider
an+1an+2an+3 · · · . It should be noted that from this sequence
we obtain xn =

∑∞
i=n+1 aiβ

−i . Theorem 1 implies that{xn −
α/(β − 1)} tends to follow Parry’s absolutely continuous
invariant density h(x) for almost all initial values x= x0.

Daubechies et.al [1] pointed out that the valueνmay dif-
fer from one application to the next and introduced a flaky
version of an imperfect quantizer, defined by

Qf
[ν0,ν1](x) =


0, if x ≤ ν0,
1, if x ≥ ν1,
0 or 1, if x ∈ (ν0, ν1).

(7)

This notation means that forx ∈ (ν0, ν1) we do not know
which value in{0,1} the flaky quantizer will assign.

Daubechies et. al [1] gave the following theorem that
guarantees the exponential accuracy of the quantization er-
ror made by aβ encoder with a flaky quantizer.

Theorem 2 (Daubechies et.al [1])For β ∈ (1,2), x ∈
[0,1), 1 < ν0 < ν1 < 1/(β − 1), define

bf
i+1 = Qf

[ν0,ν1](βx
f
i ), i = 0,1,2, · · · , (8)

xf
i+1 = βx

f
i+1 − Qf

[ν0,ν1](βx
f
i ), xf

0 = x (9)

Then for all N∈ N,

0 ≤ x−
N∑

i=1

bf
i β
−i ≤ ν1β−N. (10)

In what follows, we consider a scale-adjustedβ expan-
sion of x̃ = s(β − 1)x ∈ [0, s], wheres is a scale parameter
andβ ∈ (1, 2). For simplicity, assumes= 1.

Definition 3 The scale-adjustedβ map of scale one, Sβ,ν :
[0,1) 7→ [0,1) for ν ∈ [(β − 1),1] is defined by

Sβ,ν(x) = βx− (β − 1)Qν(βx). (11)

Delay
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Figure 2: Scale-adjustedβ-encoder withs= 1.

Let x̃ ∈ [0, 1) be an input for the scale-adjustedβ en-
coder. The output sequence for ˜x is (See Fig. 2)

ai+1 = Qν(βxi), i = 0,1, . . . (12)

xi+1 = Sβ,ν(xi) x0 = x̃, . (13)

Then, we have ˜x = (β − 1)
∑∞

i=1 aiβ
−i . As shown in Fig. 3,

xn = Sn
β,ν(x0) does not diverge if the threshold valueν sat-

isfiesν ∈ [β − 1, 1]. Since the exact valueν in a circuit
is not known,ν can be considered a random variable dis-
tributed in a range [ν0, ν1]. In this case,xn does not diverge
if ν0 ≥ β−1 andν1 ≤ 1. This property makes theβ encoders
robust to the fluctuations of the threshold.
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Figure 3: A map of the scale-adjustedβmap withs= 1.

For almost all initial valuesx0 ∈ [0,1), xn generated
by Eq. (13) does not fall into periodic points but stays
within a range. Attractors are observed in the dynamics
of β encoders and are referred to asβ expansion attrac-
tors [3]. Such an attractor can be considered as an informa-
tion source. The connection between information sources
and the chaotic dynamics is discussed in [7].

2.1. The proposed method

We recently proposed a method for converting a binary
sequence generated from aβ encoder to another binary se-
quence that is approximately regarded as independent and
identically distributed (i.i.d.) random variables [5]. The
proposedβ-ary to binary converter should be implemented
in a digital circuit. Therefore, we have developed a fixed-
point arithmetic with limited precision for the interval al-
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gorithm, which is similar to the methods discussed by Uye-
matsu and Li [8]. A real numberx ∈ [0, 1) with unlimitted
precision is rounded down to a fixed point numberℓ/2w,
ℓ ∈ {0,1, . . . , 2w − 1}, wherew is called a word length.
[The β-ary to binary conversion algorithm [5]]

1. Let n be the number of output symbols we shall gen-
erate. Leti = j = 1, k = 0, l′ = 0, u′ = 2w − 1, and
γ = ⌊ 2w

β
⌋, and⌊x⌋ denotes the smallest integer greater

than or equal tox．

2. Readai . If ai = 0, then update

u′ = l′ +
⌊

(u′−l′)·γ
2w + 1

2

⌋
(14)

If ai = 1, then update

l′ = u′ −
⌊

(u′−l′)·γ
2w + 1

2

⌋
(15)

3. (a) If 1
4 ≤

ℓ′

2w <
1
2 and 1

2 ≤
u′

2w <
3
4, then update

ℓ′ = 2ℓ′ − 2w−1,u′ = 2u′ − 2w−1, andk = k+ 1.

(b) If u′

2w <
1
2, then outputb jb j+1 · · ·b j+k = 01· · · 1

and updatek = 0, ℓ′ = 2ℓ′, u′ = 2u′, and j =
j + k+ 1.

(c) If ℓ
′

2w ≥ 1
2，then outputb jb j+1 · · · b j+k = 10· · · 0

and updatek = 0, l′ = 2l′ − 2w, u′ = 2u′ − 2w,
and j = j + k+ 1.

4. If j ≥ n, then letm = i and quit. Otherwise, update
i = i + 1 and go back to Step 2.

Note thatm is the number of input symbols required to gen-
eraten output symbols and thatmdepends on{ai}. Because
of the truncation operations in Eqs. (14) and (15), the distri-
bution of the generated sequence is deviated from the target
distribution. The effect of the word lengthw is left to be an-
alyzed.

3. The Random Number Generation Problem in Infor-
mation Theory

By the β-ary to binary converter, shown in Fig. 1, we
try to generate a sequence ofb1b2 · · · which is regarded
as an i.i.d. random process from an input sequencea1a2

which is not an i.i.d. process. The problem of simulat-
ing a prescribed target distribution by repeating tosses of a
coin with a given probability is known asa random number
generation problemin information theory [10]. Knuth and
Yao [9] have investigated the problem of random number
generation for simulating an arbitrary target distribution by
successive tosses of an unbiased coin.

Han and Hoshi [11] proposed a deterministic algorithm,
called the interval algorithm, that generates target random
sequences of fixed length from a prescribed information
source by use of random coin sequences of variable length
from a given information source. The interval algorithm
is based on the successive refinement of partitions of the
unit interval [0,1). They gave a tight upper bound on the
expected number of tosses:
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Figure 4: The expected length of the input sequence per
one output symbol.

Theorem 3 (Han and Hoshi [11]) LetA andB be finite
sets. Letp = {p(a)} andq = {q(b)} be probability distri-
butions onA andB. Let E[M] be the expected number of
tosses required to simulate an i.i.d. random sequence of
length n subject to the distributionq. Then, we have

nH(q)
H(p)

≤ E(M) ≤nH(q)
H(p)

+
log2(2(|A| − 1))

H(p)

+
h(pmax)

(1− pmax)H(p)
, (16)

where pmax = maxa∈A p(a), H(p) = −∑a∈A p(a) log2 p(a)
is the entropy, and h(p) = −p log2 p− (1− p) log2(1− p) is
the binary entropy.

In the β-ary to binary conversion algorithm, the target
distribution isq(0) = q(1) = 1/2 so that we haveH(q) = 1.

See [10] for a theoretical framework of random num-
ber generation in information theory, where asymptotic ap-
proximation problems are considered in which the target
random numbers are generated approximately within an ar-
bitrarily small torelance in terms of variational distance.

Definition 4 (Variational Distance) Let q = {q(b)} and
q̃ = {q̃(b)} be probability distributions on a finite setB.
The variational distance betweenq andq̃ is defined by

d(q, q̃) =
∑
b∈B
|q(b) − q̃(b)| (17)

4. Numerical Results

The performance of the random number generation us-
ing β encoder andβ-ary/binary converter is evaluated. In
the proposed method, a hardwareβ encoder is used. How-
ever, in this study,β encoder is simulated by a computer
program. Fig. 4 shows the expected length of input sym-
bols per one output symbol. Simulation results shows that
E[M]/n approaches to the value1

log2 β
from above. This re-

sult shows that the proposed method is efficient in terms of
the conversion rate.

Fig. 5 shows the histograms of the generated output se-
quenceb1 · · · b5. In this simulation,K = 32,000 input
signals, defined by ˜x(k) = k/K, k = 0,1, . . . ,K − 1, are
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Figure 5: Histogram of the generated binary sequence
b1b2 · · · b5. The horizontal axis showsi =

∑5
j=1 b j25− j

5 7 9 11 13 15
10

-3

10
-2

10
-1

10
0

m

V
a
ri

a
ti

o
n
a
l 

D
is

ta
n
c
e

β = 1.8, n = 6

Figure 6: Variational distance between the uniform distri-
bution and the distribution of the output sequence. Hori-
zontal axis shows the length of the input sequencea1 . . . am.

used to generatea(k) = a(k)
1 · · · a

(k)
m . Then, for eacha(k), β-

ary/binary converter givesb(k)
1 · · ·b

(k)
5 , where the length of

output signals is fixed ton = 5. The lower graph is much
closer to uniform distribution than the upper one. Figure 6
shows that the variational distance between the uniform
distribution and the empirical distribution forb(k)

1 · · ·b
(k)
n

decreases exponentially asm increases.
We have so far assumed that theβ value in a hardwareβ

encoder is known to theβ-ary/binary converter. However,
it is one of the important properties ofβ encoders that the
β value can fluctuate. It should be reasonable to assume
that there is a mismatch betweenβ used in aβ-ary/binary
converter, denoted bŷβ and the trueβ. In Fig. 7 shows that
the variational distance does not approaches to zero ifβ , β̂
asm increases.

5. Conclusion

The performance of a recently proposed random number
generation method usingβ encoder withβ-ary/binary con-
verter [5] is evaluated in term of the conversion rate and
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Figure 7: The effect of mismatch betweenβ values used in
β encoder andβ-ary/binary converter

variational distance between uniform distribution and the
distribution obtained by the proposed method. The conver-
sion rate, i.e., the expected length of input sequence per one
output symbol approaches to the value 1/ log2 β. We have
verified that the variational distance decreases exponen-
tially. Such results show the efficiency of the method [5].
The effect of short word lengthw is left to be analyzed.
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