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Abstract—This paper deals with a feedback con-
trol using automatic choosing functions and observer-
control design procedure, for nonlinear systems with
linear measurement. A constant term which arises
from linearization of a nonlinear equation is treated as
a coefficient of a stable zero dynamics. A given non-
linear system is linearized piecewise so as to be able to
design the linear optimal controllers with observer. By
the automatic choosing functions, these controllers are
smoothly united into a single nonlinear feedback con-
troller, which is called an augmented automatic choos-
ing control of nonlinear observer type. This controller
is applied to improve the transient stability of power
systems, whose simulation results show that the new
controller enables to expand the stable region well.

1. Introduction
The problem of nonlinear control design has been

studied for many years[1-8]. Most controllers are syn-
thesized by linearizing a given nonlinear system so that
the linear estimation and control theory is applicable
when some of the state variables of the system are not
measurable. One of them is based on a truncation at
the first order of the Taylor expansion[1,2]. This con-
trol law is easy to implement to many practical non-
linear systems, but is only useful in small region or in
almost linear ones. Controllers based on a change of
coordinates in differential geometry [3,4] are effective
in wider region, but not easy to implement to practical
systems. Controllers based on Fuzzy reasoning[5] are
more practical, but usually need a lot of divisions.

This paper is concerned with a nonlinear feedback
controller by using the automatic choosing functions
and the linear control theory for nonlinear systems
with linear measurement. This controller well works
even in nonlinear systems with high nonlinearity and
wider region. Considering the nonlinearity, we define
some separative variables whose inverse domain asso-
ciated with the region of system is divided into some
subdomains. On each subdomain, the system equation
is linearized by the Taylor expansion so as to be ap-

plied the linear observer and LQ control theory [2,8].
Constant terms by this linearization are treated as co-
efficients of a stable zero dynamics[7]. The resulting
linear controls are smoothly united by the automatic
choosing function to make a single nonlinear feedback
control, whose estimator is a nonlinear observer. This
controller is called an augmented automatic choosing
control of nonlinear observer type (AACCNO).

A power system in transient stability problem is one
of the typical nonlinear systems with high nonlinear-
ity, so the proposed method is successfully applied to
it. Experimental results indicate that the transient
stability by AACCNO is much improved than by the
ordinary linear optimal controller (LOC).

2. Statement of Problem
The plant is assumed to be described by a nonlinear

dynamic equation and a linear measurement equation

ẋ = f(x) + Bu, x ∈ D ⊂ Rn (1)
y = Hx (2)

where · = d/dt, x = [x[1], · · · , x[n]]T is an n-
dimensional state vector, u = [u[1], · · · , u[r]]T is an r-
dimensional control vector, y = [y[1], · · · , y[m]]T is an
m-dimensional measurement vector, f is a nonlinear
vector-valued function with f(0) = 0 and is contin-
uously differentiable, B is an n × r constant driving
matrix, H is an m × n constant measurement matrix,
and T denotes transpose.

Considering the nonlinearity of the system (1), in-
troduce a vector-valued function C : D → RL which
defines the separative variables {Cj(x)}, where C =
[C1 · · ·Cj · · ·CL]T is continuously differentiable. Let
D be a domain of C−1. For example, if x[2] is the el-
ement which has the highest nonlinearity of (1), then

C(x) = x[2] ∈ D ⊂ R (L = 1).

The domain D is divided into some subdomains:
D = ∪M

i=0Di, where DM = D − ∪M−1
i=0 Di and

C−1(D0) � 0. Di(0 ≤ i ≤ M) endowed with a
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lexicographic order is the Cartesian product Di =
ΠL

j=1[aij , bij ], where aij < bij .
We here introduce an automatic choosing function

of sigmoid type:

Ii(x) =
L∏

j=1

{
1 − 1

1 + exp (2N (Cj(x) − aij))

− 1
1 + exp (−2N (Cj(x) − bij))

}
(3)

where N is positive real value, −∞ ≤ aij < bij ≤
∞. Ii(x) is analytic and almost unity on C−1(Di),
otherwise almost zero(see Figure 1).

The aim of the paper is to design a nonlinear feed-
back control AACCNO by smoothly uniting the sec-
tionwise observer-controls which make use of (3).

3. Design of AACCNO
The nonlinear function f of (1) is linearized by the

Taylor expansion truncated at the first order about a
point χ̂i ∈ C−1(Di) and χ̂0 = 0 on each subdomain
Di (see Figure 2):

f(x) 	 f(χ̂i) + Ai(x − χ̂i) = Aix + wi

where
Ai = ∂f(x)/∂xT |x=χ̂i , wi = f(χ̂i) − Aiχ̂i.

Introduce a stable zero dynamics :
˙̂x[n+1] = −σx̂[n+1] (4)

(x̂[n+1](0) 	 1, 0 < σ < 1),

where the value of σ shall be selected so that σ =
− ˙̂x[n+1]/x̂[n+1] ≤ −ẋ[k]/x[k] holds for all k (k =
1, · · · , n). This tries to keep x̂[n+1] 	 1 for a good
while when the system (1) is not on C−1(D0). We
approximate f as

f(x) 	 Aix + wi 	 Aix + wix̂[n+1]. (5)

Assume that the control is designed by using (3) as

u =
M∑
i=0

uiIi(x̂) (6)

where x̂ is an estimate of x.
Substituting (5) and (6) into (1), the dynamic equa-

tion becomes

ẋ = f(x) + Bu

=
M∑
i=0

f(x)Ii(x̂) + B

M∑
i=0

uiIi(x̂)

=
M∑
i=0

(Aix + wix̂[n+1] + Bui + εi(x))Ii(x̂) (7)

where εi is approximation error. This suggests the
following sectionwise linear observer:

aij bij aij bij

N=3.0 N=6.00.5

1

Figure 1: Automatic Choosing Function
(N = 3.0, 6.0)
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Figure 2: Sectionwize linearization

˙̂x = f(x̂) + Bu + K(y − Hx̂)

=
M∑
i=0

(Aix̂ + wix̂[n+1] + Bui + εi(x̂)

+ Ki(y − Hx̂))Ii(x̂) (8)

where

K =
M∑
i=0

KiIi(x̂) (9)

Note that f(x̂) is nonlinear function so that (8) is
of nonlinear observer type.

Consider a special case of Ii(x̂) = 1 in which N =
−aij = bij → ∞ in (3).

Put X = [xT , x̂[n+1]]T , then Eqs.(4) and (7) yield

Ẋ = ĀiX + B̄ui + ε̄i

where

Āi =
[

Ai wi

0 −σ

]
, B̄ =

[
B
0

]
, ε̄i =

[
εi

0

]
,

0 is an appropriate dimensional null matrix. Eqs.(7)
and (8) by putting e = x − x̂ derive

ė = (Ai − KiH)e + Δεi

from (2) where Δεi = εi(x) − εi(x̂). Thus we have[
Ẋ
ė

]
=

[
Āi − B̄Fi B̄FiEz

0 Ai − KiH

] [
X
e

]
+ ε̃i

(10)
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if ui = −FiX , where ε̃i = [ε̄T
i , ΔεT

i ]T .

The characteristic equation of a closed-loop system
of (10) when considered ε̃i as another input becomes

det[sI − (Āi − B̄Fi)] det[sI − (Ai − KiH)],

in which both (Āi − B̄Fi) and (Ai − KiH) must be
stabilized. It means that the separation property of
the observer-control design procedure could be used
to get Fi and Ki.

In this section we make use of the optimal observer-
control approach. To get Fi, we apply the LQ control
theory as follows. Consider that the system and cost
function

Σ :
{

Ẋ = ĀiX + B̄u
Ji = 1

2

∫ ∞
0

(XT QX + uT
i Rui)dt

(11)

is given. Then an application of the linear optimal
control theory [2] yields

ui(X) = −FiX

Fi = R−1B̄T Pi (12)

where the (n+1)× (n+1) matrix Pi satisfies with the
Riccati equation:

PiĀi + ĀT
i Pi + Q − PiB̄R−1B̄T Pi = 0. (13)

Here, Q = QT > 0 and R = RT > 0 which denote
positive symmetric matrices. Values of Q and R are
properly determined based on engineering experience
[8].

To get Ki, we apply the linear identity observer the-
ory for the dual system of Σ. Then we have

Ki = SiH
T V −1 (14)

where the n × n matrix Si satisfies with the Riccati
equation:

AiSi + SiA
T
i − SiH

T V −1HSi + W = 0 (15)

Here, W = WT > 0 and V = V T > 0 should be prop-
erly selected taking about the loop transfer recovery
[8].

As a result, we have the AACCNO formula in case
of the sigmoid type as follows.
[AACCNO formula]

˙̂x = f(x̂) + Bu + K(y − Hx̂)
˙̂x[n+1] = −σx̂[n+1] (x̂[n+1](0) 	 1)

u =
M∑
i=0

uiIi(x̂)

K =
M∑
i=0

KiIi(x̂)
where

Ai = ∂f(x)/∂xT |x=χ̂i , wi = f(χ̂i) − Aiχ̂i

Āi =
[

Ai wi

0 −σ

]
, B̄ =

[
B
0

]

ui = −R−1B̄T PiX̂, X̂ = [x̂T , x̂[n+1]]T

PiĀi + ĀT
i Pi + Q − PiB̄R−1B̄T Pi = 0

Ki = SiH
T V −1

AiSi + SiA
T
i − SiH

T V −1HSi + W = 0

Ii(x̂) =
L∏

j=1

{
1 − 1

1 + exp (2N (Cj(x̂) − aij))

− 1
1 + exp (−2N (Cj(x̂) − bij))

}

Since this formula is of a structure-specified type,
each parameter included in the above equations must
be properly selected so that the feedback control sys-
tem (1) by AACCNO could stabilize globally.

4. Numerical Example

Consider a field excitation control problem of power
system. Put x=[x[1], x[2], x[3]]T =[EI − ÊI , δ − δ̂0, δ̇]T

and u = Efd − Êfd.
Here δ: phase angle, δ̇: rotor speed, EI : open circuit
voltage, Efd: field excitation voltage.
Then this system is described by Eqs.(1)and(2), where
n = 3, r = 1, m = 2,

f1(x) = − 1
kT ′

d0

(
x[1] + ÊI − Êfd

)

+
(Xd − X ′

d)Ṽ Y12

k
x[3] cos

(
θ12 − x[2] − δ̂0

)
f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃

(
x[1] + ÊI

)
cos

(
θ12 − x[2] − δ̂0

)

−Y11cos θ11

M̃

(
x[1]+ÊI

)2

− D̃(x)

M̃
x[3]+

Pin

M̃

D̃(x) = Ṽ 2

{
T ′′

d0(X
′
d−X ′′

d )
(X ′

d + Xe)2
sin2

(
x[2] + δ̂0

)

+
T ′′

q0(Xq−X ′′
q )

(Xq + Xe)2
cos2

(
x[2] + δ̂0

)}

b1 =
1

kT ′
d0

, k = 1 + (Xd − X ′
d)Y11 sin θ11

H =
[

1 0 0
0 0 1

]
, B = [b1, 0, 0]T .

Parameters are
M̃ = 0.016095[pu] T ′

d0 = 5.09907[sec]
Ṽ = 1.0[pu] Pin = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]
T ′′

d0 = 0.0299[pu] T ′′
q0 = 0.02616[pu].
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Figure 3: Stable region

Steady state values are

ÊI = 1.52243[pu] δ̂0 = 48.57◦
ˆ̇δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].

Set X = [xT , x̂[4]]T = [x[1], x[2], x[3], x̂[4]]T , δ̂0 =
48.57◦, C(x)=x[2], L = 1, M = 1, a1 = 61.37◦,
χ̂0 = 0, χ̂1 = [0, 80◦ − δ̂0, 0]T , σ = 0.3262, R = 1, Q =
diag(1, 1, 1, 1), V = diag(1, 1), W = diag(139.1, 1, 1),
X̂(0) = [0, 0, 0, 1]T . These values are selected by trial-
and-error referring to Ref.[7]. Experiments are carried
out for the new control(AACCNO) and the ordinary
linear optimal control (LOC)[1, 2]. Figure 3 depicts
the cross section of the stable region for AACCNO
and LOC, where x[1](0) = 0. Figure 4 shows the time
responses of x[1] ∼ x[3] when X(0) = [0, 1.4, 0, 1]T .
Experimental results indicate that the stable region
and trajectories by the new AACCNO are much bet-
ter than those by the LOC.

5. Conclusions

We have studied an augmented automatic choos-
ing control of nonlinear observer type (AACCNO) for
nonlinear systems with linear measurement. This con-
troller has been applied to a field excitation control
problem of power system. Simulation results have
shown that the new controller is able to improve the
transient stability considerably well.
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