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Abstract— The cochlea is a good candidate for a
high-performance Fourier analyzer used in engineering ap-
plications. Therefore, electronic circuit implementation
of cochlear function is important. However, no high-
performance cochlear model is suitable for circuit imple-
mentation.

Therefore, Kohda et al. proposed a simple cochlear
model that can effectively reproduce the characteristics of
the cochlea. The model is based on an ideal distributed con-
stant circuit, and is referred to as a reflectionless transmis-
sion line model (cochlear reflectionless transmission line
model). It can reproduce the physiological characteristics
of the cochlea by adjusting circuit parameter values.

In this paper, we describe an improved method for quan-
titative reproduction of cochlear characteristics using an
optimization technique.

1. Introduction
The cochlea is a peripheral organ in the inner ear. It

converts sound from the eardrum into a nerve signal. In
addition, the cochlea is a good candidate for a high-
performance Fourier analyzer.

Oono and Kohda proposed a passive reflectionless
transmission-line model of the cochlea (passive model)
based on an ideal distributed constant circuit [1]. The
model can reproduce the passive properties of a physio-
logical cochlea [2] by adjusting the values of circuit pa-
rameters. However, parameter tunings alone do not enable
the passive model to reproduce the active properties of the
cochlea. Subsequently, Kohda proposed an active reflec-
tionless transmission-line model with a negative resistance
(active model) [3].

In addition, Kohda et al. incorporated the function of
the outer hair cell into the model, and modified the model
using a hydro-mechanical transducer and a cubic nonlin-
ear element [4]. This model can be transferred back into
the passive model through an equivalent circuit conversion.
Therefore, it is important to determine the circuit parame-
ter values of the passive model prior to creating the active
model, so that the passive model can quantitatively repro-
duce the passive properties of the cochlea. We proposed a
method for determining the parameter values of the passive
model to qualitatively reproduce the passive properties of
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Figure 1: Cochlear passive model [1].

the cochlea [5, 6].
In this paper, we optimize the parameter values in the

passive model to quantitatively design the cochlear passive
model.

2. Passive model
The passive model of the cochlea is shown in Fig. 1 [1].

A parallel impedance Zp(x, ω) in Fig. 1 is given by

Zp(x, ω) = jωLp(x) + Rp(x) +
1

jωCp(x)
, (1)

where x is a distance from the input of the transmission
line, and ω is an angular frequency of the input signal.

If the value of each circuit elements in Zp(x, ω) is as-
sumed to change exponentially with distance, circuit ele-
ments can be written as

Rp(x) = R0e−ax, Lp(x) = L0eax, and Cp(x) = C0eax, (2)

where R0, L0, and C0 are values of circuit elements when
x = 0, and a is a constant determined by the characteristics
of the cochlea.

In Fig. 1, if we assume that the characteristic impedance
Z0(x, ω) is independent of distance [7], then the character-
istic impedance can be given by

Z0(x, ω) = r, (3)

where r is a positive constant. As a result, the series
impedance Zs(x, ω) in Fig. 1 is defined as

Zs(x, ω) =
r2

Zp(x, ω)
. (4)
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The circuit elements in Zs(x, ω) should satisfy the fol-
lowing conditions.

Rs(x) =
r2

Rp(x)
,

Ls(x) = r2C(x), (5)

Cs(x) =
L(x)
r2 .

The propagation constant γ(x, ω) of the transmission line
is given by

γ(x, ω) =

√
Zs(x, ω)
Zp(x, ω)

=
r

Zp(x, ω)
. (6)

Substituting Eq. (1) into Eq. (6) gives

γ(x, ω) =
r

jωLp(x) + Rp(x) + 1/ jωCp(x)
. (7)

Resonance angular frequency β(x) and sharpness Q(x)
are respectively given by

β(x) = β0e−ax, β0 =
1

√
L0C0

, (8)

Q(x) = Q0eax, Q0 =
1

R0

√
L0

C0
, (9)

where β0 and Q0 are the resonance angular frequency and
sharpness of the circuit, respectively, when x = 0.

Taking the integral of the propagation constant with re-
spect to x gives

Γ(x, ω) =
∫ x

0
γ(y, ω)dy, (10)

or

Γ(x, ω) =
jr

2a
√

L0/C0 + jR0L0ω
×ln

 √1 + jR0C0ω +
√

L0C0eaxω√
1 + jR0C0ω −

√
L0C0eaxω


− ln

 √1 + jR0C0ω +
√

L0C0ω√
1 + jR0C0ω −

√
L0C0ω


 . (11)

The transfer function is defined as

F(x, ω) =
Ub(x, ω)
P(0, ω)

, (12)

where Ub(x, ω) is the current flowing in the parallel
impedance, and P(0, ω) is the input voltage of the trans-
mission line.

We can rewrite Eq. (12) using Eqs. (1) and (10) as

F(x, ω) =
1

Zp(x, ω)
exp(−Γ(x, ω)). (13)

The gain and phase characteristics of the passive model
are numerically simulated with Eq. (13) and shown in

Figs. 2 and 3, respectively, where a = 0.288, L0 = 2.385 ×
10−7, C0 = 2.132 × 10−7, R0 = 1.5, and r = 5.

As shown in Fig. 2, the gain characteristic has a peak,
i.e., the maximum gain, at a particular frequency. We refer
to this as the “peak frequency.” Beyond the peak frequency,
the gain rapidly decreases towards the resonance frequency.
Note that the resonance frequency is different from the peak
frequency. In Figs. 2 and 3, a ◦ symbol shows the peak
frequency, and in Fig. 3, a × symbol shows the resonance
frequency.

3. A method for determining parameter values
We describe below the basic principle to determine the

values of parameters a, L0, C0, R0, and r in the passive
model [6].

First, we introduce a variable n that represents the square
root of the ratio of L0 and C0 as

n =

√
L0

C0
. (14)

We can tune the maximum gain at the peak frequency
through n.

Substituting Eq. (9) into Eq. (14) gives

Q0 =
n

R0
. (15)

Therefore, using R0, we can determine the sharpness with-
out changing the resonance frequency.

Next, we adjust the phase value at the resonance fre-
quency by r. Through this tuning, the resonance frequency
itself is not affected.

We now show the design procedure according to the
above.

Step 1: We determine the value of a, such that the charac-
teristics of the resonance frequencies according to the
distance match those of the peak frequencies obtained
from physiological experiments.
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Figure 2: Frequency vs. gain characteristics of the passive
model.
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Figure 3: Frequency vs. phase characteristics of the passive
model.

Step 2: We set the value of L0 and C0 as

L0 = C0 =
1
β0

; (16)

the initial value of n = 1.

Step 3: By fixing the value of L0 as given in Eq. (16), we
tune the peak frequency through n so that it matches
its physiological counterpart. In this tuning process,
we use the empirical values R0 = 1 and r = 5.
The numerical simulation results of the gain and phase
characteristics are labeled (a) in Figs. 4 and 5, respec-
tively, as they were at Step 2 (before the value of n
was adjusted). The circuit element values used in the
simulations are: a = 0.281, n = 1, R0 = 1, and r = 5.
After we tune the value of n in Step 3, we obtain the
gain and phase characteristics labeled (b) in Figs. 4
and 5, respectively. After tuning, the circuit element
values are: a = 0.281, n = 1.2, R0 = 1, and r = 5.

Step 4: We adjust the value of R0 to match the maximum
gain and sharpness at the peak frequency to those ob-
tained from physiological experiments.
The numerical simulation results after the tuning of
R0 are labeled as (c) in Figs. 4 and 5. After tuning, the
circuit element values are: a = 0.281, n = 1.2, R0 =

100, and r = 5.

Step 5: We adjust the phase at the resonance frequency by
changing r, so that it produces a value similar to that
obtained from the physiological experiments.
The numerical simulation results after the adjustment
of r are labeled as (d) in Figs. 4 and 5. After tun-
ing, the circuit element values are: a = 0.281, n =
1.2, R0 = 100, and r = 3.

Step 6: Repeating the procedures from Step 3 to Step 5,
we further tune the values of n, R0, and r, so that the
gain and phase responses sufficiently match those ob-
tained from the physiological experiments.
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Figure 4: The gain characteristics of the passive model at
x = 30 mm, when we tune the parameters. (a) Step 2, (b)
Step 3, (c) Step 4, and (d) Step 5.
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Figure 5: The phase characteristics of the passive model at
x = 30 mm, when we tune the parameters. (a) Step 2, (b)
Step 3, (c) Step 4, and (d) Step 5.

4. Optimization of the parameter values
To obtain improved parameter values that provide a bet-

ter match between the gain and phase responses of the pas-
sive model and those of the physiological data, we use an
optimization technique.

First, we introduce a constraint on parameter a as

ln fmax − ln fmin

xmax
≤ a, (17)

where fmax and fmin are the maximum and minimum fre-
quencies of the human audible range, respectively, and xmax

is the length of a human cochlea. In this paper, we use
fmax = 10 kHz, fmin = 100 Hz, and xmax = 35 mm.

Next, the object function E(a, R0, n, r) can be defined
as

E(a, R0, n, r) = wQ · EQ(a, R0, n, r)
+w f · EF(a, R0, n, r) + wg · EG(a, R0, n, r)
+wp · EP(a, R0, n, r), (18)

where wQ, w f , wg, and wp are weights, and
EQ(a, R0, n, r) (Eq. (19)), EF(a, R0, n, r) (Eq.
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(20)), EG(a, R0, n, r) (Eq. (21)), and EP(a, R0, n, r) (Eq.
(22)) are the errors from the target values in the sharpness,
peak frequency, maximum gain, and phase at resonance
frequency of the designed circuit, respectively.

EQ(a, R0, n, r) =
∣∣∣∣∣Qx − Q(x; a, R0, n, r)

Qx

∣∣∣∣∣ , (19)

EF(a, R0, n, r) =

∣∣∣∣∣∣ p fx − fp(x; a, R0, n, r)
p fx

∣∣∣∣∣∣ , (20)

EG(a, R0, n, r) =
∣∣∣∣∣gx − g(x; a, R0, n, r)

gx

∣∣∣∣∣ , (21)

EP(a, R0, n, r) =
∣∣∣∣∣ px − p(x; a, R0, n, r)

px

∣∣∣∣∣ , (22)

where Qx, p fx, gx and px are the target values for the
sharpness, peak frequency, maximum gain, and phase at
resonance frequency at a distance of x, respectively, and
Q(x; a, R0, n, r), fp(x; a, R0, n, r), g(x; a, R0, n, r)
and p(x; a, R0, n, r) are the current values for the sharp-
ness, peak frequency, maximum gain, and phase at reso-
nance frequency given by Eq. (13) at a distance of x, re-
spectively.

The constraint given by Eq. (17) is continuous, which
allows us to classify the above optimization problem as a
continuous optimization problem. In addition, this con-
straints are primary inequalities; however the objective
function in Eq. (18) is not a linear function.

Consequently, the target optimization problem is a non-
linear optimization problem. Therefore, we use the down-
hill simplex method to determine the parameter values.
4.1. Design example

We demonstrate the optimization of the parameters
through a design example. The target values for Qx, p fx,
gx, and px at x = 30 mm used in the design example are
summarized in Table 1.

Before the optimization, we first determined the initial
values of the parameters a, R0, n, and r according to the
procedure described in Sec. 3. In addition, small random
numbers were added to those parameter values.

We then performed the optimization proposed above.
The total number of the trials were 10 with 200 iterations
in each trial.

Through the optimization, we obtained the values of
a = 0.156385, R0 = 0.200919, n = 1.057865, and
r = 2.133622. Figure 6 shows the gain and phase responses
with these optimized parameters. The relative errors from
the target values defined by Eqs. (19) to (22) are summa-
rized in Table 2, that confirms good matches.

5. Conclusion
We have proposed a technique to determine the parame-

ter values in a passive model of the cochlea. The proposed
Table 1: The target values.
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Figure 6: Frequency vs. gain and phase characteristics as a
result of the parameter optimization.

Table 2: The relative errors from the target values.
Relative Error [%]

EQ 0.01
EF 0.01
EG 0.028
EP 0.028

technique was formulated as a nonlinear optimization prob-
lem. We use the downhill simplex method to solve the op-
timization problem. Through the design example, we con-
firmed the effectiveness of the proposed method.

In the future, we will try other solving technique rather
than the downhill simplex method. In addition, we will
propose a design technique including a hydro-mechanical
transducer and a cubic nonlinear element.
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