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Abstract—This paper is concerned with a nonlinear
feedback control problem. The purpose of this paper is to
design a nonlinear feedback control for single input non-
linear systems, which is effective in wider region in state
space, using a formal linearization method. A formal lin-
earization function which is composed of polynomials is
introduced, and then a given nonlinear system is trans-
formed into an augmented bilinear system with respect to
a formal linearization function. In order to linearize it, we
exploit the ordinary LQ control technique which is derived
by a linearization of Taylor expansion truncating at the first
order. As a result, we synthesize a nonlinear feedback con-
trol for the given nonlinear system by applying a linear sys-
tem theory. Numerical experiments are illustrated to show
effectiveness of this method.

1. Introduction

When we deal with the nonlinear feedback control prob-
lem, one might face with difficulties because of the com-
plexity of nonlinearity. Many nonlinear tools have been
developed, however most of them can be the tools for some
particular nonlinear systems(e.g. [1, 2, 3, 4]). So we need
to employ the fit tool that is one of the best appropriate ones
for the given nonlinear problem. We cannot expect one par-
ticular procedure to apply all nonlinear systems. On the
other hand, there are a few tools which cover a wide range
of nonlinear problems (e.g. [5, 6, 7, 8]). Formal lineariza-
tion method [9, 10, 11, 12, 13, 14] is one of them.

We have been studying the formal linearization method
and tried to apply the method to nonlinear control prob-
lems. In the previous work [14], we have presented a non-
linear control design for single input nonlinear systems by
using two-stage formal linearization and two-type LQ con-
trols. This method is easily applicable to nonlinear sys-
tems, but has complexities of linearization and some prob-
lems like how to select parameters to transform into a for-
mal linear system. In this paper, we consider a simple non-
linear control design for single input nonlinear systems us-
ing a formal linearization method. A formal linearization
function which is composed of polynomials up to higher
order is introduced. Deriving the derivative of the formal

linearization function along with the solution of a given
nonlinear system and expanding a nonlinear function by
Taylor expansion up to higher order, a given nonlinear sys-
tem is transformed into an augmented bilinear system with
respect to a formal linearization function and a control. Ex-
ploiting the ordinary LQ control which is obtained by a lin-
earization of Taylor expansion truncating at the first order
and substituting it to the control of augmented elements
in the bilinear system, a formal linear system is obtained
with respect to the formal linearization function. If the for-
mal linear system is controllable, or at least stabilizable,
we can find the state feedback control which stabilize the
given nonlinear system.

This method is simple to design a nonlinear control and
directly applicable to a nonlinear feedback problem. We
will illustrate numerical examples to show simpleness and
effectiveness of this method.

2. Statement of Problem

For the sake of simplicity, we consider a nonlinear con-
trol problem using a formal linearization method for scalar
systems. For vector systems, it is straightforward. We con-
sider a class of nonlinear systems of the form

Σ1 : ẋ(t) = f
(
x(t)
)
+ bu, x ∈ D, (1)

where t > 0 denotes time, overdot represents derivative
with respect to t, x is a state variable, D is domain, f ∈ C
is a nonlinear function with f (0) = 0, b is a constant and u
is an input.

3. Nonlinear Control by Formal Linearization

To design nonlinear feedback control, we exploit a for-
mal linearization method [9, 10, 11, 12, 13, 14] and apply
Taylor expansion truncating up to the N-th order to approx-
imate a given nonlinear system to a formal linear system.

A formal linearization function is defined as

φ(x) = [x, x2, x3, · · · , xN]T (2)

= [φ1(x), φ2(x), φ3(x), · · · , φN(x)]T
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where T denotes transpose. The derivative of the element
of φ is

φ̇i(x) = ixi−1 ẋ

= ixi−1
(

f (x) + bu
)

(i = 1, 2, · · · ,N). (3)

Applying Taylor expansion to the nonlinear function f (x)
in Eq.(3) about x = 0

φ̇i(x) = ixi−1
(

f ′(0)x +
1
2!

f ′′(0)x2 +
1
3!

f (3)(0)x3 + · · · + bu
)

where

f (i)(0) =
∂i

∂xi f (x)|x=0 .

Truncating up to the N-th order yields

φ̇i(x) ≈ i f ′(0)xi +
i

2!
f ′′(0)xi+1 +

i
3!

f (3)(0)xi+2 +

· · · + i
(N − i + 1)!

f (N−i+1)(0)xN + ibxi−1u

= i f ′(0)φi +
i

2!
f ′′(0)φi+1 +

i
3!

f (3)(0)φi+2 +

· · · + i
(N − i + 1)!

f (N−i+1)(0)φN + ibφi−1u . (4)

So a bilinear system with respect to the formal linearization
function is derived by

φ̇(x) = Āφ(x) + b


1

2φ1
...

NφN−1

 u (5)

where

[Āi j] =


[ i
( j − i + 1)!

f ( j−i+1)(0)
]

(i ≤ j)

[0] (i > j)
,

(i, j = 1, 2, · · · ,N) .

In order to transform the bilinear system (Eq.(5)) into a lin-
ear system, we use the ordinary LQ control [15] for the
linearized system which is obtained by Taylor expansion
truncating at the first order about the origin

Σ0 : ẋ = A0x + bu (6)

where

A0 = f ′(0) =
∂

∂x
f (x)|x=0 .

Assume the pair (A0, b) is controllable, or at least stabiliz-
able. Let a cost function be

J0 =

∫ ∞
0

(Q0x2 + R0u2)dt (7)

where Q0 ≥ 0 and R0 > 0. Applying the LQ control theory
to this linearized system in Eqs.(6) and (7) yields

u0(x) = −R−1
0 bP0x (8)

where P0 > 0 satisfies the Riccati equation

2P0A0 + Q0 − P2
0b2R−1

0 = 0 . (9)

Substitute this linear control u0 in Eq.(8) into the control u
of augmented elements in the bilinear system (Eq.(4))

φ̇i(x) = i
(

f ′(0) − b2 P0

R0

)
φi +

i
2!

f ′′(0)φi+1 +
i

3!
f (3)(0)φi+2+

· · ·+ i
(N − i + 1)!

f (N−i+1)(0)φN , (i = 2, 3, · · ·N). (10)

And the bilinear system (Eq.(5)) is approximated to a linear
system

φ̇(x) = Aφ(x) + cu (11)

where

[Ai j] =


[ i
( j − i + 1)!

f ( j−i+1)(0)
]

(i < j)[
i f ′(0) − ib2 P0

R0

]
(i = j)

[0] (i > j)

,

c =


b
0
...
0

 .
Thus the formal linear system is obtained as

Σ2 : ż(t) = Az(t) + cu(t) , (12)

z(0) = φ(x(0)) .

Its inversion is simply obtained from Eq.(2) by

x̂(t) = [1 0 0 · · · 0]φ(x(t)) = [1 0 0 · · · 0]z(x(t)) . (13)

If the formal linear system (Eq.(12)) is controllable, or
at least stabilizable, we can find the state feedback con-
trol which stabilize the state variable φ, namely the original
state variable x. Let a cost function be

J =
∫ ∞

0
(zT Qz + Ru2)dt (14)

where Q ≥ 0 and R > 0. By an application of the LQ
control theory to the system in Eqs.(12) and (14) yields

û(t) = −R−1cT Pz(t) (15)

where P > 0 satisfies the Riccati equation

PA + AT P + Q − PcR−1cT P = 0. (16)

The control û in Eq.(15) is a nonlinear feedback control
which can stabilize the given nonlinear system (Eq.(1)).
Thus the closed-loop system becomes

ẋ(t) = f
(
x(t)
)
+ bû(t) . (17)
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4. Numerical Experiments

Numerical experiments are illustrated by the following
simple nonlinear control system. Consider the system

ẋ(t) = x2(t) + u , (18)

x ∈ [0,∞) .

This nonlinear system (Eq.(18)) is transformed into a bilin-
ear system (Eq.(5)) with respect to the formal linearization
function φ of Eq.(2). When the order of φ is N = 3, the
bilinear system is

φ̇(x) =
∂

∂t

 x
x2

x3

 =
 0 1 0

0 0 2
0 0 0

φ(x) +

 1
2φ1

3φ2

 u . (19)

In order to investigate the accuracy of this linearization, we
show the trajectories of the state variable x̂ for a system
φ̇(x) = Aφ(x) when u = 0, namely an autonomous system

ẋ(t) = x2(t) (20)

and its approximated values x̂ obtained by inversion

x̂(t) = [1 0 0 · · · 0]φ(x(t)). (21)

Fig. (1) shows a true value x(t) and x̂(t) when the order of
φ(x) is varied as N = 1 to 6 and an initial value is x(0) = 0.1
.

t

x,
 x^

true
N=6

N=5
N=4

N=3
N=2

N=1

0 2 4 6 8
0

0.5

1

Figure 1: x and x̂ of an autonomous system by the formal
linearization

In order to transform the bilinear system (Eq.(19)) into
the formal linear system (Eq.(12)), we set u0 in Eq.(8). Lin-
earization of the given system (Eq.(18)) at the origin results
in the linear system

ẋ(t) = u (22)

and the LQ control for the system is

u0 = −x (23)

when the parameters are

Q0 = 1,R0 = 1

in the Riccati equation (Eq.(9)). Substituting the linear con-
trol u0 in Eq.(23) into u of the second and third order ele-
ments of the bilinear system (Eq.(19)) yields the linear sys-
tem

φ̇(x) =

 0 1 0
0 −2 2
0 0 −3

φ(x) +

 1
0
0

 u . (24)

To the linear system (Eq.(24)), we can apply the LQ control
theory. Let the parameters in Eq.(14) be

Q =

 1 0 0
0 1 0
0 0 1

 , R = 1 .

Solving the Riccati equation (Eq.(16)) yields the positive
definite matrix

P =

 1 0.333 0.167
0.333 0.389 0.178
0.167 0.178 0.281

 .
Thus the nonlinear feedback control for the given nonlinear
system becomes

û(t) = [−1, −0.333, 0.167]φ(x) = −x−0.333x2−0.167x3.
(25)

Fig. (2) shows results of time responses of the closed-
loop system (Eq.(17)) at x(0) = 1.4 when the order of the
formal linear system is varied as N = 1 to 6.

t

x
N=1
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N=3

N=4
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0

0.5

1
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Figure 2: Results for stabilizing nonlinear system

When the order of the formal linearization function is
N = 1, the formal linear system is the same as the ordinary
LQ control system by Taylor expansion truncating at the
first order. It means that the proposed method can stabilize
the system even in the region in which the conventional
method can not stabilize. Table I shows values of the cost
function

J =
∫ ∞

0
(x2 + û2)dt (26)

when the order of the formal linear system is varied as N =
1 to 6 and the performance is improved as N increases.
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Table I
Values of cost function

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
J × 11.604 6.349 5.522 5.186 5.011

(× : Very large value )

Next we make a comparison between our method (New
method) and the previous method [14] (Old method). Table
II shows stable regions from the origin and cost functions J
in Eq.(26) when the order of the formal linearization func-
tion is N = 6 and parameters in the previous one are the
same in the paper [14].

Table II
Comparison with the previous method

Stable region J
New method 7.44 5.01
Old method 5.00 12.03

5. Conclusions

This paper has considered a design of nonlinear feedback
control for nonlinear systems using a formal linearization
method. This approach is simple to design and easily ap-
plicable to a nonlinear feedback problem. Numerical ex-
periments show that the proposed approach is effective in
stabilizing a nonlinear feedback control problem and can
improve the performance of the nonlinear control as the or-
der of the formal linear system is increased. And it also
indicates that the proposed method is better than the previ-
ous work.
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