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Abstract– We will propose a simplified architecture for a 

cellular neural network suitable for high-density integration 
of electron devices. A neuron consists of only eight 
transistors, and a synapse consists of just only one variable 
resistor. First, we developed a specialized simulator to 
estimate the practical operation. Moreover, we emulated the 
neural network using a field-programmable gate array and 
trimming resistors. The neural network succeeded in 
learning multiple logics even in a small-scale network. We 
think that this result indicates that our proposal has a big 
potential for future electronics using neural networks. 
 

1. Introduction 
 

Cellular neural networks are neural networks where a 
neuron is connected to only neighboring neurons [1], hence 
suitable for integration of electron devices, and promising 
for image processing [2], pattern recognition [3], etc. Until 
now, fundamental theory, working principle, and 
application potential have been actively investigated using 
formal models and numerical simulation. However, there 
exist few reports on actual hardware of cellular neural 
networks [4], although they are suitable for integration of 
electron devices as aforementioned. We imagine that this is 
because the conventional circuits of the neurons and 
synapses are still complicated, even though the structure of 
the network is simple. 

We are developing neural networks from the viewpoint 
of device hardware [5],[6]. In this presentation, we will 
propose a simplified architecture for a cellular neural 
network suitable for high-density integration of electron 
devices. The main advantage is that the circuits of the 
neurons and synapses are excellently simplified. A neuron 
consists of only eight transistors, and a synapse consists of 
just only one variable resistor. As a result, the neural 

network must have a different structure and modified 
procedure for the recalling and learning from the 
conventional one, and hence we would like to evaluate 
them before actual integration of electron devices. First, we 
developed a specialized simulator to estimate the practical 
operation. Moreover, we emulated the neural network using 
a field-programmable gate array (FPGA) and trimming 
resistors. The neural network succeeded in learning 
multiple logics, such as AND, OR, and XOR, even in a 
small-scale network, such as 3  3. Although this result is 
primitive, we think that it indicates that our proposal has a 
big potential for future electronics using neural networks. 
 

2. Simplified Architecture 
 

2.1. Neuron 
 

Figure 1 shows the neuron. We limited the necessary 
functions of the neuron to that a binary state is maintained 
by itself and altered by the input signals. In order to realize 
this simple function, we adopted a latch circuit that 
circularly connects two inverters with two switches. The 
firing or non-firing state is maintained using the latch 
circuit when the switches are turned on, namely, we defined 
the firing state as a situation when the voltages at node  
and node  are high and complementarily low, respectively, 
whereas we defined the non-firing state as the opposite 
situation. Although the latch circuit is a well-known circuit 
for maintaining a binary state, it should be noted that its 
characteristic is similar to a sigmoid function, a typical 
function used to provide a favorable soft threshold in neural 
network models. The binary state is altered after the 
switches are turned off, the input signals are applied to 
nodes  and , and the switches are turned on again. In any 
case, by employing complementary inverters and switches, 
we succeeded in making a neuron consist of only eight 
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transistors. 
 

2.2. Synapse 
 

Figure 2 shows the synapse. We limited the necessary 
functions of the synapse to that an input signal from a 
neuron is weighted by its synaptic connection strength and 
transferred to another neuron, and the synaptic connection 
strength is adjusted. In order to realize this simple function, 
we adopted a variable resistor. An input voltage from a 
neuron is weighted by the conductance of the variable 
resistor and transferred to another neuron. The synaptic 
connection strength corresponds to the conductance of the 
variable resistor, which is adjusted obeying a modified 
Hebbian learning as belowmentioned. In any case, we 
succeeded in making a synapse consist of just only one 
resistor. 
 

2.3. Neural network 
 

Figure 3 shows the neural network. Because the neuron 
and synapse are dramatically simplified, although the 
neural network is still classified into a kind of cellular 
neural networks, it must have a different structure from the 
conventional one. We arrayed the neurons and connected 
each neuron to only up, down, left, and right neighboring 
neurons through the synapses. In order to compensate the 
small number of the synapses, we connected neurons 
through a pair of synapses, namely, concordant and 
discordant synapses. The concordant synapse is connected 
between the same nodes in the two neurons, nodes  and  
or  and , and inclines to make the states of the two 
neurons the same, whereas the discordant synapse is 
connected between different nodes, nodes  and , and 
inclines to make the states of the two neurons different. All 
the input voltages from all the neighboring neurons are 
weighted by the conductances of all the concordant and 
discordant synapses and transferred to the target neuron. 
The target neuron becomes the firing or non-firing state. As 
a result, the binary state of the target neuron is determined 
by the majority rule of the binary states of the neighboring 
neurons with weighted by the synaptic connection strengths. 
Moreover, it should be noted that this network is also 
classified into a kind of interconnective neural networks, 
where a synapse transfer a signal from a neuron to another 
neuron and simultaneously from the latter neuron to the 

former neuron vice-versa, namely, the synapses are 
bidirectional, which may correspond to functions of two 
synapses and also compensate the small number of the 
synapses. In any case, we succeeded in making a cellular 
neural network, where we connected each neuron to only 
neighboring neurons, which is exceedingly suitable for 
high-density integration of electron devices. 
 

3. Modified Hebbian learning 
 

Figure 4 shows the modified Hebbian learning. Because 
the neuron and synapse are dramatically simplified, the 
neural network must also have a modified procedure for the 
learning from the conventional one. Hebbian learning is a 
typical learning procedure in biological and artificial neural 
networks [7]. The synaptic connection strength is enhanced 
when both neurons connected to the synapse are in firing 
states and impaired otherwise. Based on the Hebbian 
learning, we will propose the modified Hebbian learning as 
shown in Fig. 4. Here, we assume NOT logic as an example. 
The left and right neurons are assigned to input and output 
elements, respectively. Initially, at the initial recalling stage, 
a non-firing state is applied to the input element, and a non-
firing state arises from the output elements, and vice versa 
because the synaptic connection strength of the concordant 
synapse is accidentally slightly stronger than that of the 
discordant synapse, which is not NOT logic. Next, at the 
first learning stage, a non-firing state is applied to the input 
element, and a firing state is applied to the output element. 
Since the concordant synapse is connected between the 
same nodes in the two neurons, and the binary states at both 
nodes in two neurons are different, electric current flows 
through the concordant synapse because of the voltage 
difference, whereas electric current does not flow through 
the discordant synapse. Consequently, the characteristic 
degradation gradually occurs at the concordant synapse, 
which is a necessary property of our synapses, the 
conductivity becomes gradually lower, and the synaptic 
connection strength becomes gradually weakened, whereas 
the characteristic enhancement gradually occurs at the 
discordant synapse, which is another necessary property of 
our synapses, the conductivity becomes gradually higher, 
and the synaptic connection strength becomes gradually 
strengthened. At the second learning stage, a firing state is 
applied to the input element, and a non-firing state is 
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Fig. 4. Modified Hebbian Learning. 
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applied to the output element. Similarly, the synaptic 
connection strength of the concordant synapse becomes 
gradually weakened, whereas the synaptic connection 
strength of the discordant synapse becomes gradually 
strengthened. Finally, at the final recalling stage, a non-
firing state is applied to the input element, and a firing state 
arises from the output elements, and vice versa because the 
synaptic connection strength of the discordant synapse 
becomes slightly stronger than that of the concordant 
synapse, which is NOT logic. It should be noted that these 
necessary properties of our synapses can be obtained using 
memristors [8], which is also suitable for high-density 
integration of electron devices. Because the synaptic 
connection strengths become both weakened and 
strengthened, we call this procedure modified Hebbian 
learning. In any case, by employing the modified Hebbian 
learning, we succeeded in making a synapse consist of just 
only one resistor. 
 

4. Specialized simulator 
 

Figure 5 shows the formal model. The neuron receives 
input signals and sends output signals, and each 
neighboring neuron from which the input signal is received 
is the same as that to which the output signal is sent, which 
means that the synapses are bidirectional. The operation of 
this formal model can be approximately described using the 
following difference equation:  

     txwtx iiS1         (1) 

Here, xi(t) and x(t+1) are the input signal at the previous 
step and the output signal at the next step, respectively, and 
they are +1 and -1 for the firing and non-firing states 
respectively. wi is the synaptic connection strength, and it is 
positive and negative for the concordant and discordant 
synapses, respectively. S is a special step function that 
outputs +1 and -1 when the input is positive and negative, 
respectively. 

The operation of the modified Hebbian learning can be 
approximately described using the following differential 
equation:  

i
i xx

dt

dw
          (2) 

Here,  is the changing speed of the synaptic connection 
strength and should be optimized to maximize the learning 
efficiency. We executed the numerical simulation for our 
network. 

Figure 6 shows the synaptic connection strengths 
obtained after the simulation. It was confirmed that the 
network works as AND, OR, and XOR by these synaptic 
connection strengths. The neural network succeeded in 
learning multiple logics at least on the simulator. 
 

5. Emulated experiment 
 

Figure 7 shows the experimental method emulated using 
a FPGA and trimming resistors. We emulated  the neurons 
using a FPGA and the synapses using the trimming resistors, 
connected them using a flat connector, applied Switch, In1, 
and In2 and measured Out using an oscilloscope. 

Figure 8 shows the experimental results obtained using 
FPGA and trimming resistors.  It was confirmed that the 
network works as AND, OR, and XOR by the 
abovementioned synaptic connection strengths. The neural 
network succeeded in learning multiple logics also on 
actual hardware. 
 

6. Conclusion 
 

We proposed a simplified architecture for a cellular 
neural network suitable for high-density integration of 
electron devices. A neuron consists of only eight transistors, 
and a synapse consists of just only one variable resistor. 
First, we developed a specialized simulator to estimate the 
practical operation. Moreover, we emulated the neural 
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Fig. 5. Formal model for the specialized simulator. 
 

 

 

 

 

 

 

 

 

 

Concordant 
Synapse 

Discordant 
Synapse

 

AND 

 

In2

 

In1

 

Out

 

 

 

 

 

 

 

 

 

Concordant
Synapse 

Discordant
Synapse

OR 

 

In2

 

In1

Out

 

 

 

 

 

 

 

 

 

Concordant
Synapse 

Discordant 
Synapse

 

XOR 

In2

In1

Out

Fig. 6. Synaptic connection strengths obtained after the simulation. 
 

- 501 -



   

network using a FPGA and trimming resistors. The neural 
network succeeded in learning multiple logics even in a 
small-scale network.  

In this presentation, we emulated the neural network 
using a FPGA and trimming resistors. However, the same 
functions can be realized using integrated devices, such as 
LSI for the neuron and memristors or ferroelectric 
capacitors for the synapses. We would like to insist that the 
results obtained here can be surely obtained also using the 
integrated devices. Therefore, we think that this result 
indicates that our proposal has a big potential for future 
electronics using neural networks. 
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Fig. 7. Experimental method emulated using FPGA and trimming resistors. 
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