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Abstract— Intermodulation distortion analysis is one
of the main computational bottlenecks in the simulation
of Radio Frequency circuits. Recently, an efficient mo-
ments based approach for computing the third order inter-
cept point (IP3) using moments analysis with only single-
tone inputs was presented. This approach did not, how-
ever, provide any sensitivity information which is critical
for design centering, optimization and yield analysis ap-
plications among others. In this paper, we propose an ef-
ficient method for computing the sensitivity of IP3 using
single-tone adjoint moments analysis. The adjoint method
finds the sensitivity of one output with respect to all vari-
ables with only minimal additional computation cost to the
original algorithm, thereby making it very efficient.

1. Introduction

One of the main specifications that engineers must ac-
count for in the design of Radio Frequency (RF) front ends
is the linearity of the core blocks such as low noise am-
plifiers (LNAs) and mixers. Measuring the amount of the
third order nonlinear distortion is of particular importance
since its effects will appear in the passband of the system
and are thus very difficult to filter out. This distortion in
turn could lead to many undesirable effects such as gain
compression and adjacent channel interference [1]. The
key figure of merit for quantifying the third order nonlinear
distortion is the third order intercept point (IP3) [1]. Deter-
mining the value of IP3 through simulation has, however,
been one of the main bottlenecks in the design automa-
tion process due to the multi-tone input requirement which
considerably slows down steady-state simulators based on
techniques such as the Harmonic Balance method [2].

In [3], [4], an efficient method for computing the value
of IP3 was presented based on the computation of the Har-
monic Balance moments [5] from the general Harmonic
Balance equations with only a single-tone input and with-
out the need to find the solution of the equations. This re-
duced the computation cost to that of solving a system of
sparse, linear equations, and also resulted in a significantly
smaller system than that with multi-tone inputs. This is es-
pecially the case with mixer circuits where only two tones
(1 RF tone in addition to that of the Local Oscillator) are
required instead of the typical three tones. However, this

approach did not provide any insight into the sensitivity of
IP3 with respect to various circuit parameters. For any sen-
sitivity analysis to be performed, only brute-force pertur-
bation could be employed, which is very inefficient. In [6],
a new approach for computing the sensitivity of IP3, based
on the adjoint sensitivity method [7], was presented. The
method in [6], however, is limited in its application to the
multi-tone moments method presented in [8].

In this paper, we extend the method in [6] to the com-
putation of IP3 sensitivity using the single-tone moments
method. The adjoint method has been a classical tool for
the sensitivity analysis of both linear and nonlinear circuits,
including those operating under large signal periodic and
almost-periodic conditions as is the case with the Harmonic
Balance method [9]. The approach proposed in this pa-
per benefits from the same computational cost advantage
as [3], [4], while also providing the sensitivity of IP3 with
respect to all the circuit parameters. This would provide a
key advantage for circuit optimization, design space explo-
ration and design centering analysis. It is to be noted that
similarly to the approach in [3], [4] this method is general
and easily automated for any arbitrary circuit topology. Fi-
nally, since the adjoint moments are computed using the
same set of linear equations that are used to determine the
Harmonic Balance moments, the CPU cost of the operation
is reduced to that of finding three additional moments over
the CPU cost of the method in [3], which is very cheap.

2. System Formulation

In this section, we present the general formulation of
the nonlinear Harmonic Balance equations followed by
overviews of the moments computation algorithm and of
the method for computing IP3 using single-tone moments
analysis. This will provide the necessary background infor-
mation for the new single-tone sensitivity analysis method
presented in Section 3.

2.1. Harmonic Balance Formulation

The Harmonic Balance equations for a nonlinear system
are of the form [10]

AX + F(X) = BDC + αBRF + βBLO, (1)

where
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• X ∈ RNh is a vector of unknown cosine and sine coef-
ficients for each of the variables in x(t).

• BDC ∈ RNh contains the contribution of the DC in-
dependent sources while BRF ∈ RNh and BLO ∈ RNh

show the location of the RF and LO input frequency
tones, respectively.

• α and β are the amplitudes of the RF and the LO volt-
ages, respectively.

• A ∈ RNh×Nh is a block matrix representing the contri-
bution of the linear elements.

• F(X) ∈ RNh is the vector of nonlinear equations.

2.2. Harmonic Balance Moments

The Harmonic Balance moments are the coefficients of
the Taylor series expansion of the Harmonic Balance vec-
tor of unknowns, X, with respect to the signal amplitude
voltage α, as given by

X = M0 + M1α + M2α
2 + M3α

3 + . . . =

∞∑
i=0

Miα
i (2)

where Mk is the kth moment vector. The zeroth moment
M0, is obtained by finding the solution of the system de-
scribed by (1) with α = 0. The remaining moment vectors
Mn can then be found by solving the system of equations
given by [5]

ΦM1 = BRF (3)

ΦMn = −
1
n

n−1∑
j=1

(n − j)T j Mn− j, n ≥ 2 (4)

where Φ is the moments computation matrix given by

Φ = A +
∂F(X)
∂X

∣∣∣∣∣
(α=0)

, (5)

and T j are the coefficients of the Taylor series expansion
with respect to α of the nonlinear Jacobian given by

∂F(X)
∂X

=

∞∑
i=0

Tiα
i, (6)

It is important to note that the matrixΦ has the same struc-
ture as a Jacobian matrix but is evaluated with only the DC
and LO tones present which makes it very sparse. As can be
seen from (3) and (4), the computation of the moment vec-
tors is a solution of a set of sparse linear algebraic equations
where the left-hand-side matrix is the same throughout and
is therefore very efficient.
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Figure 1: Location of distortion terms in moments for am-
plifier circuits
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Figure 2: Location of distortion terms in moments for
mixer circuits

2.3. Computation of IP3 from the Moments

The value of the input referred IP3 (IIP3) for a circuit
excited with a single frequency tone RF signal of Vin(t) =

α cos(ωt), can be determined from the moments using the
following relation [3],

IIP3 =

√
m1,1

m1,3
(7)

In this equation, m1,1 represents the entry in the first mo-
ment vector at the fundamental frequency of ω, while the
term m1,3 represents the entry in the third moment vector at
the same fundamental frequency as illustrated in Fig. 1 for
amplifiers and in Fig. 2 for mixers.

3. Moments Based Sensitivity

The relative sensitivity of IIP3 with respect to a general
parameter ‘γ = λ0 + λ’, is defined as follows

S IIP3
γ = λ0

∂(IIP3)
∂γ

= λ0
∂(IIP3)
∂λ

(8)

where λ0 is the nominal value of the parameter and λ is the
change in its value. Essentially, To find the sensitivity of

- 371 -



IP3 with respect to the parameter λ, from (7) we note that
we need to obtain

∂

∂λ
(IIP3) =

1
2

(
m1,1

m1,3

)− 1
2 m1,3

∂m1,1

∂λ
− m1,1

∂m1,3

∂λ

(m1,3)2 (9)

From (9), we observe that determining the sensitivity of
IP3 now essentially comes down to determining the value
of ∂m1,1

∂λ
and ∂m1,3

∂λ
, since the terms m1,1 and m1,3 are already

available from the original computation of IP3.

3.1. Adjoint Moments Sensitivity Analysis

The computation of the sensitivity of IP3 has been re-
duced to finding the derivatives of m1,1 and m1,3 with re-
spect to λ. In this section, we derive an efficient adjoint-
based approach for computing these derivatives. As illus-
trated in Fig. 1 and Fig. 2, the terms m1,1 and m1,3 can be
written as

m1,1 = dT M1 (10)

m1,3 = dT M3 (11)

where d is a selection vector. Note that m1,1 and m1,3 appear
in the Taylor expansion of Xout defined as

Xout = dT X = m1,0 + m1,1α + m1,2α
2 + m1,3α

3 + . . . (12)

The derivative of Xout with respect to λ can now be written
as

∂Xout

∂λ
=
∂m1,0

∂λ
+
∂m1,1

∂λ
α+

∂m1,2

∂λ
α2 +

∂m1,3

∂λ
α3 + . . . (13)

From this equation, we can deduce that the terms ∂m1,1

∂λ
and

∂m1,3

∂λ
, required in (9), are the first and third moments of the

expansion of ∂Xout
∂λ

. In order to compute these moments, we
start by using the general Harmonic Balance adjoint sensi-
tivity expression to write [9]

∂Xout

∂λ
= XT

a
∂A
∂λ

X (14)

where Xa is the solution of the Adjoint equations

JT Xa = −d (15)

From (14), it can be seen that the moments of ∂Xout
∂λ

can be
expressed in terms of the moments of X and Xa.

The adjoint moment vectors are defined as the Taylor
series coefficients of the expansion of the adjoint solution
vector Xa, defined in (15), with respect to the signal am-
plitude voltage α. The expansion of Xa can therefore be
expressed as

Xa = Ma0+Ma1α+Ma2α
2+Ma3α

3+. . . =

∞∑
i=0

Maiα
i (16)

where Mak is the kth adjoint moment. By substituting (2),
(13) and (16) in (14), we get the final expressions in terms

of the moments. By equating the powers of α and α3 on
both sides of the resulting expressions we can write

∂m1,1

∂λ
= MT

a0

(
∂A
∂λ

)
M1 + MT

a1

(
∂A
∂λ

)
M0 (17)

∂m1,3

∂λ
= MT

a0

(
∂A
∂λ

)
M3 + MT

a1

(
∂A
∂λ

)
M2 +

MT
a2

(
∂A
∂λ

)
M1 + MT

a3

(
∂A
∂λ

)
M0 (18)

It is important to note that the matrix ∂A
∂λ

contains only the
harmonic balance ‘stamp’ of the derivative of the element
that λ is a parameter of. It is, therefore, an extremely sparse
matrix with at most four non-zero block entries.

3.2. Computation of the Adjoint Moments

The computation of the adjoint moment vectors (defined
in (16)) is a very CPU efficient algorithm. This is achieved
by first substituting (6) and (16) into (15), which gives the
following general relationA +

∞∑
i=0

Tiα
i

T  ∞∑
i=0

Miaα
i

 = −d (19)

To determine the expressions for computing each individ-
ual adjoint moment vector, we equate powers of α on both
sides of (19). This results in the following set of equations
that can be solved sequentially:

ΦT M0a = −d (20)
ΦT M1a = −TT

1 M0a (21)
ΦT M2a = −TT

1 M1a − TT
2 M0a (22)

ΦT M3a = −TT
1 M2a − TT

2 M1a − TT
3 M0a (23)

Note that Φ is the same sparse moments computation ma-
trix that was used to determine the Harmonic Balance mo-
ments in (3) and (4). This means that no additional LU
decompositions are required to find the adjoint moments.

4. Numerical Examples

In this section, we compute the value of IP3 and its sen-
sitivity for two example circuits using the single-tone mo-
ments method and then compare the results to those ob-
tained using Harmonic Balance to demonstrate the accu-
racy and speed-up of the new approach. The two circuits
considered are a differential Low Noise Amplifier (LNA)
with an IIP3 of −7.24dBm, in addition to a singly-balanced
mixer circuit with an IIP3 of −3.4dBm. Both circuits are
implemented using Bipolar Junction Transistors and the
sensitivity computed is with respect to a collector resistor
RC . The computation cost of the sensitivity with respect to
additional parameters is negligible in both methods.

First, we use the Harmonic Balance method to determine
the steady-state solution of both circuits. The Differential
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Table 1: CPU Cost Comparison of Finding both IP3 and its
Adjoint Sensitivity for the Differential Amplifier Circuit.

Type of Harmonic Proposed Speed-
Computation Balance (s) Method (s) Up

IP3 44.67 0.34 129 x

Sensitivity 6.03 0.03 201 x

Total 50.7 0.37 137 x

Table 2: CPU Cost Comparison of Finding both IP3 and its
Adjoint Sensitivity for the Mixer Circuit.

Type of Harmonic Proposed Speed-
Computation Balance (s) Method (s) Up

IP3 118.43 0.43 275 x

Sensitivity 21.63 0.21 103 x

Total 140.06 0.64 218 x

LNA circuit was run with two input tones at f1 = 1000
MHz and f2 = 1001 MHz. The sensitivity of IP3 with re-
spect to a change in RC was found to be −2.354 × 10−4V .
For the singly-balanced mixer, the two input RF tones were
at f1 = 100MHz and f2 = 100.1MHz, while the LO fre-
quency was set to fLO = 1GHz. The sensitivity of IP3 with
respect to RC was found to be 3.104 × 10−2V for this par-
ticular circuit.

Next, using the single-tone moments method, we first
compute the adjoint moments using the relations given in
(20)–(23) and only a single tone at f = 1000MHz for the
LNA, and at f = 100MHz for the mixer. The sensitivity
expressions are then determined using (17) and (18) with
the matrix ∂A

∂λ
being the Harmonic Balance stamp of the

resistor. The sensitivity of IP3 is then computed by evalu-
ating (9). The IP3 sensitivity obtained showed a difference
of 0.08% for the LNA, and a difference of 0.63% for the
mixer when compared to perturbation. As can be seen, the
results are very accurate.

Tables 1 and 2 show a comparison of the CPU times
between traditional Harmonic Balance and the proposed
method for determining IP3 and its adjoint sensitivity ob-
tained using a prototype MATLAB simulator on a local
workstation. As can be seen, the proposed method presents
significant computational speedup in the CPU time needed
to find both IP3 and its sensitivity.

5. Conclusion

In this paper, a method for the efficient sensitivity analy-
sis of third order nonlinear distortion based on single-tone

adjoint moments analysis was presented. This approach
adds insight to the results of the single-tone moments based
method for computing IP3 presented in [3], while still re-
maining significantly more efficient than traditional multi-
tone simulation approaches based on Harmonic Balance.
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