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Abstract—In this study, we propose a chaotic circuit us-
ing a ring oscillator and a van der Pol oscillator. The struc-
ture of this circuit is very simple. Therefore, IC implemen-
tation of this circuit is not so difficult. The exact solution
and its Poincaré map are derived and the largest Lyapunov
exponent are calculated. As a result, chaotic phenomena
are confirmed. This chaotic circuit is suitable for using in-
vestigations of coupled chaotic systems, because this cir-
cuit is implemented as a electric circuit and IC implemen-
tation is not so difficult.

1. Introduction

Electric circuits are one of the natural physical sys-
tem and it can be represented by a differential equations.
Namely, it is considered that electric circuits are corre-
sponding to many kinds of natural phenomena and it is
expected that these phenomena be analyzed by using dif-
ferential equations. Especially, electric circuits are suitable
for investigating large scale chaotic coupled systems. Many
investigation results can be obtained by circuit experiments
immediately. Generally, large scale coupled systems can
be described by high dimensional equations. Therefore, its
analysis is not so easy and its computer simulation needs
a long time. Additionally, the value of electric circuit el-
ements is comparatively stable. If many same circuits are
made, almost circuits will behave the same. These are very
important advantages of using electric circuits for investi-
gations of coupled systems.

However, implementing large scale coupled systems is
not so easy. The one solution of this problem is IC imple-
mentation. Though circuit experiments of the large scale
coupled chaotic system become easy by IC implementa-
tion, many money and time are needed. Therefore, the
chaotic circuit which can be implemented as IC and can
be also implemented as normal electric circuit is needed.

In this study, we propose a chaotic circuit using a ring
oscillator and a van der Pol oscillator. The ring oscillator
included the circuit consists of Op-Amps and resistors. The
structures of the ring oscillator and the van der Pol oscilla-
tor are very simple. Therefore, IC implementation of this
circuit is not so difficult.

2. Circuit Model

2.1. Circuit Schematic

Figure 1 shows the schematic of the proposed circuit.
The left side is a ring oscillator which consists of three in-
verters. Resistor Rvr1 is for adjusting the amplitude. The
right side is a van der Pol oscillator. The Op-Amp part
works as a negative resistor. These two oscillators are cou-
pled via diodes which is placed the center.

In order to propose the new chaotic circuit, we used our
designing technique. This technique is that two oscillators
are coupled via diodes. It is very simple. However, this
technique can not determine the parameters. In this study,
parameters are determined by circuit experiments.
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Figure 1: Circuit schematic.

2.2. Circuit Model

In order to make clear the mechanism of generating
chaos, the proposed circuit is modeled as follows. Figure 2
shows diodes model of the proposed circuit. Diodes are
modeled as a piece-wise linear function shown in Fig 2 (b).
Figure 3 shows the circuit model of the proposed circuit
shown in Fig. 1. Inverters of the ring oscillator are mod-
eled as a inverter including a time delay. All elements ex-
cept diodes are modeled as linear elements. It means that
diodes play a role as non-linearity which is needed for gen-
erating chaos. Additionally, analysis becomes easy because
the elements except diodes are linear elements. This is the
useful advantage for investigating large scale coupled sys-
tems. Using this model, circuit equations are described as

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 285 -



i

 v  

(a)

 v 

i

Vth

-Vth

rd

rd

(b)

d

d

d

d0

Figure 2: Diodes model.
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Figure 3: Circuit model.

follows:



C1
dv1

dt
= − 1

R1
v1 −Gmv3,

C1
dv2

dt
= − 1

R1
v2 −Gmv1,

C1
dv3

dt
= − 1

R2
v3 −Gmv2 − id,

C2
dv4

dt
=

1
R3

v4 − i1 + id,

L1
di1
dt

= v4,

(1)

where

id =
1
rd

{
v3 − v4 +

1
2

(|v3 − v4 − Vth| − |v3 − v4 + Vth)|
}
. (2)

By substituting the variables and the parameters,

xn =
vn

Vth
(n = 1, 2, 3, 4), x5 =

R1

Vth
i1, xd =

R1

Vth
id,

τ =
1

C1R1
t, α = GmR1, β =

R1

R2
, γ =

R1

R3
,

δ =
C1

C2
, ε =

R1

R2
and ζ =

C1R2
1

L1
.

(3)

Equations (1) and (2) are normalized as

ẋ1 = −x1 − αx3,

ẋ2 = −x2 − αx1,

ẋ3 = −βx3 − αx2 − εxd,

ẋ4 = δ(γx4 − x5 + εxd),
ẋ5 = ζx4,

(4)

where

xd = x3 − x4 +
1
2

(|x3 − x4 − 1| − |x3 − x4 + 1|. (5)

3. Exact solutions and Poincaré Map

Since the circuit equations (4) are piecewise-linear, so-
lutions in each linear region can be derived. At first, we
define three piecewise-linear region as follows.

R1 : x3 − x4 > 1.
R2 : −1 < x3 − x4 < 1.
R3 : x3 − x4 < −1.

(6)

The eigenvalues in each region are calculated from Eq. (4).
The eigenvalues in each region are described as follows.

R1 and R3 : λ11, λ12, λ13, σ11 ± jω11.
R2 : λ21, σ21 ± jω21, σ22 ± jω22.

(7)

The eigenvalues in R1 and R3 are obtained numerically
from the 5th order eigenequation of Eq. (4). On the other
hand, the eigenvalues in R2 can be derived from the 3rd
and 2nd order eigenequations of Eq. (4). The equilibrium
points of each region are calculated by putting the right side
of Eq. (4) to be equal to zero. Then, the solutions in each
linear region can be described. We omit the description,
because it is complicated enough to write here.

Now, we are deriving the Poincaré map and the Jacobian
matrix.

Let us define the following subspace

S = S1 ∩ S2. (8)

where,

S1 : x3 − x4 = 1.
S2 : −αx2 − βx3 − γδx4 + δx5 < 0. (9)

The subspace S1 corresponds to the boundary condition be-
tween R1 and R2, while the subspace S2 corresponding to
the condition ẋ3 − ẋ4 > 0. Namely, S corresponds to the
transitional condition from R1 to R2.

Let us consider the solution starting from an initial point
on S. The solution returns back to S again after wandering
R1, R2 and R3. Hence, we can derive the Poincaré map as
follows.

T : S→ S, x0 7→ T(x0). (10)
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where, x0 is an initial point on S, while T(x0) is the point
at which the solution starting from x0 hits S again. T(x0)
can be derived by using the exact solutions. The Jacobian
matrix DT of the Poincaré Map T can be also derived.

We can calculate the largest Lyapunov exponent by

µ = lim
N→∞

1
N

N∑
j=0

log |DT j · e j|. (11)

here e j is a normalized base.

4. Circuit Experiments And Computer Calculations

Figure 4 shows the results of circuit experiments and
computer calculated results. Circuit experiment results are
shown in Fig. 4 (1). Projections of attractors onto x3 and
x4 and their Poincaré maps are shown in Figs 4 (2) and (3),
respectively. Rows of Fig. 4 are corresponding to each oth-
ers. In circuit experiments, circuit parameters are fixed as
R = 74.0[kΩ], C = 0.015[µF], L = 10[mH], Rn = 2.7[kΩ]
and Rvr2 = 380[kΩ]. The Op-Amp is type TL082. Corre-
sponding parameters of computer calculations are fixed as
α = 4, γ = 3, δ = 0.2, ε = 100 and ζ = 0.5. Control
parameters are set as Rvr1 and β. By changing control pa-
rameters, periodic orbits are observed in Figs. 4 (a), (b) and
(f). Chaotic phenomena are observed in Figs. 4 (c) - (e).

One-parameter bifurcation diagram and the calculated
largest Lyapunov exponent are shown in Fig. 5 and Fig. 6,
respectively. Bifurcation phenomena of periodic orbits,
chaos, window and so on are observed. For 4.20 <
β < 6.80, the largest Lyapunov exponent becomes posi-
tive though two large windows are observed. By using this
result, We can say the generation of chaos is confirmed nu-
merically. By changing other parameters, period doubling
bifurcation phenomena, tours and so on are also observed
in this circuit.

5. Conclusions

In this study, we proposed the chaotic circuit using a ring
oscillator and a van der pol oscillator. By circuit experi-
ments, chaotic attractors have been observed and by using
a linearized model, the generation of chaos have been con-
firmed numerically.

The characteristic of this circuit is a suitable for IC im-
plementation and it is easy to implement as a normal elec-
tric circuit. This characteristic is useful for investigations
of large scale coupled chaotic circuits. Therefore, it is ex-
pected that this circuit contributes to studies of large scale
coupled chaotic circuits.

(a)

Rvr1 = 55[Ω] β = 12

(b)

Rvr1 = 62[Ω] β = 10

(c)

Rvr1 = 98[Ω] β = 6.7

(d)

Rvr1 = 106[Ω] β = 5.9

(e)

Rvr1 = 126[Ω] β = 5.2

(f)

Rvr1 = 148[Ω] β = 4.0
(1) (2) (3)

Figure 4: Circuit experiments and Computer calculation
results. (1) Circuit experiments. (2) Projections of attrac-
tors. (3) Poincaré maps. Circuit experiments: Horizon-
tal axis is v3 [1.0V/div]. Vertical axis is v4 [1.0V/div].
R = 74.0[kΩ], C = 0.015[µF], L = 10[mH], Rn = 2.7[kΩ]
and Rvr2 = 380[kΩ]. Computer calculations: α = 4, γ = 3,
δ = 0.2, ε = 100 and ζ = 0.5.
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Figure 5: One-parameter bifurcation diagram. Horizontal: β. Vertical: x1

Figure 6: Largest Lyapunov exponents. Horizontal: β. vertical: µ.
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