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Abstract—A particle swarm optimization (PSO)
algorithm with hybrid population topology is proposed in
this paper. In contrast to the fully connected network in
traditional PSO, the hybrid network is mixed with regular
network which has strong exploration ability and scale-free
network whose heterogeneous degree distribution diversify
the searching ability of each particle. Based on the
comparisons with some existing PSO variations, the
effectiveness of the proposed PSO is confirmed in terms of
solution quality and algorithm robustness.

1. Introduction

Particle swarm optimization (PSO) is an algorithm to
simulate the behavior of flocks of birds and schools of fish
[1]. Due to its simple concept, easy implementation and
quick convergence, PSO has been widely used to deal with
many nonlinear and complex practical problems, such as
the power loss minimization problem [2].

To improve the performance of PSO, various topological
neighborhoods have been considered. In standard PSO, the
position of each particle is updated according to the best
position found by the whole swarm and by itself, thus it
has a fully connected network in which each particle is
connected with others. Due to this feature, the standard
PSO is easily trapped into local optima in solving the
multimodel problems. Thus, the investigation of the
suitable networks for PSO has attracted much attention.
In [3], various network topologies such as rectangular,
hexagonal, cylinder and toroidal networks are studied. In
recent years, some concepts of complex networks have
been borrowed into the population structure of PSO.
For example, a scale-free informed PSO is proposed
in [4], the BA model [5] is used as a self-organizing
network generation mechanism to adaptively produce a
population topology with scale-free property. Based on the
small-world network structure [6], the particle is updated
according to the distance between it and the one with the
best function value among the whole swarm.

Based on the fact that the regular network has good
exploration ability [7] and the scale-free network has strong
exploration ability [4] respectively, these two types of
networks are mixed together to form a hybrid network
for the PSO neighborhood design in this paper. As a
result, the proposed PSO could converge to better solutions

with higher success rate than some existing optimization
approaches.

2. Design of Optimization Algorithm

2.1. The standard PSO and variants

In PSO, the population is called a swarm and each
individual is defined as a particle which represents a
possible solution. The i−th particle has a position
vector xi = (xi1, xi2, · · · , xiD) and a velocity vector vi =

(vi1, vi2, · · · , viD), where D is the dimension of the searching
space. The velocity and position of the i−th particle is
adjusted based on the information of the local best position
found so far by itself (denoted as xp) and the global best
position discovered by the whole swarm (denoted as xg)
according to the following updating rule:

vi = wtvi + c1r1(xp − xi) + c2r2(xg − xi)
xi = xi + vi

(1)

where wt is the inertia weight; c1 and c2 are two positive
constant acceleration coefficients; r1 and r2 are two
uniformly distributed random values in (0, 1).

It is noted that wt can be set as a constant value, it also
can be updated as follows [8]:

wt = wmax − t
wmax − wmin

itermax
(2)

where wmax and wmin are the maximum and minimum
inertia weights, respectively; itermax is the maximum
iteration.

In Eq. (1), the calculation methods of xg give rise to
two main PSO variants with respect to the neighborhood
of a particle. One is the gbest PSO in which each
particle is guided by the current global best particle. The
other one is the lbest PSO whose particles learn form
neighbors. Simulation results in [3, 4] prove that the proper
neighborhood in lbest PSOs would be more likely to avoid
the premature convergence which is always met in gbest
PSOs. Thus, an effective lbest PSO with hybrid network
topology (denoted as HPSO) is proposed in the following.

2.2. The hybrid network topology

To obtain high quality solutions, the swarm population
is mixed with regular network and scale-free network, and
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Table 1: Four benchmark functions
Function name Formula D Search space Minimum value Criterion

Sphere function f1(xi) =
∑D

i=1(xi)2 30 [−100, 100]D 0 0.01
Quartic function f2(xi) =

∑D
i=1

(
x4

i + random[0, 1)
)

30 [−1.28, 1.28]D 0 1
Rastrigin function f3(xi) =

∑D
i=1

(
(xi)2 − 10 cos(2πxi) + 10

)
30 [−1.28, 1.28]D 0 100

Griewank function f4(xi) = 1
4000

∑D
i=1(xi)2 −

∏D
i=1 cos xi√

i
+ 1 30 [100, 100]D 0 0.05

an illustration of this hybrid topology is shown in Fig. 1. In
the regular network, each node is connected to its nearest k
neighbors, this statistic implies that a long time is required
to transfer the information from one particle to others of the
graph [2], thus different regions of the search space could
be explored at the same time. In the scale-free network,
there exists a few nodes with large neighborhood size and
most nodes with relatively small neighborhood size, this
heterogeneous property means that the hub particles can
guide the search direction of the low-degree particles which
have effects in small search regions [4], thus the hybrid
network can guarantee the exploration and exploitation
ability simultaneously.

To generate a network with scale-free property, the
BA model [5] is used and its construction procedure is
described as: Based on a fully connected network with m
nodes, at each step, a new node is added and connected to
n existing nodes with the probability Pi = ki/

∑
i(ki), where

ki is the degree of node i.

Figure 1: An illustration of the hybrid topology.

2.3. The PSO algorithm with hybrid topology

The operation procedures of the proposed HPSO are
described as follows:

Step 1: Set the original iteration as t = 0. Randomly
initialize the position xi and velocity vi of each particle i,
the xp is set as the copy of the current position xi.

Step 2: Evaluate the fitness function for each particle i.
Among its neighbors, find xg with the best fitness value and
update xp.

Step 3: Calculate the positions and velocities of all
particles according to Eq. (1).

Step 4: Start the next generation t = t + 1 and go to Step
2. This process is repeated until the maximum iteration is
reached.

3. Simulation Results and Discussions

To demonstrate the effectiveness of the proposed HPSO,
it is compared with some existing methods:

1. FPSO: This is the standard PSO with fully connected
network.

2. LWPSO: The PSO algorithm with nonlinear
decreasing inertia weight wt as shown in Eq. (2).

3. RPSO: The PSO with regular network in which each
node is connected to its nearest 2 neighbors.

4. SFPSO: The PSO with scale-free network, and
parameters are set as m = 5, n = 4.

5. IPSO: This is an independent-minded PSO with
dynamically changing network [9], the probability
that a particle is influenced by the swarm is set as 0.2.

In the above six algorithms, each swarm has 50 particles,
other parameters are set as c1 = c2 = 1.479. Every
algorithm is run 100 times with the maximum iteration
10, 000. In HPSO, the regular network and scale-free
network have the same size 25, with parameters k = 2,
m = 5, n = 4, wmax = 0.9 and wmin = 0.4.

For performance comparison, the above six optimization
algorithms are applied on four benchmark optimization
problems summarized as in Table 1. All the functions
are minimum problems and the minimum value is the
best value. The criterion is used to evaluate whether the
optimization is successful or not. In each trial, if the
criterion is not met within 10,000, it is thought this trial
is unsuccessful. It is noted that f1 and f2 are unimodel
functions, while f3 and f4 are multimodel functions with
numerous local minima.

To check whether the algorithm could reach the
predefined criterion as shown in Table 1, the successful
rate S , defined as the percentage of successful runs, is
illustrated in Table 2. Obviously, the proposed HPSO
reaches S = 100% in most cases, thus the HPSO has
strongest robustness among all PSOs. Moreover, compared
with FPSO and LWPSO having fully connected network,
RPSO, SFPSO and HPSO have better success rate. The
reason is in these algorithms, when a particle discovers a
solution with good quality, its information needs long time
to reach others of the swarm. When a particle traps into
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Table 2: The average values of the successful rate S and the convergence speed T of different algorithms
Functions f1 f2 f3 f4

S T S T S T S T

FPSO 100% 623 28% 1392 56% 276 43% 2828
LWPSO 100% 599 34% 70 65% 636 45% 358
SFPSO 100% 777 78% 1448 87% 74 81% 724
RPSO 100% 1017 87% 1171 92% 89 82% 801
IPSO 100% 910 100% 271 97% 459 89% 2458
HPSO 100% 881 100% 109 100% 129 98% 581

Table 3: Result of mean (Mean) and standard (Std) values of different algorithms on four benchmark functions
Functions f1 f2 f3 f4

Mean Std Mean Std Mean Std Mean Std

FPSO 1.74×10−18 0.75×10−18 3.91×10−1 0.31×10−1 8.03×101 1.03×101 3.45×10−2 4.45×10−3

LWPSO 2.94×10−19 0.32×10−19 7.01×10−3 0.65×10−3 8.12×101 0.97×101 1.18×10−2 2.32×10−3

SFPSO 3.67×10−18 0.72×10−18 5.34×10−1 1.43×10−1 6.68×101 0.92×101 1.09×10−2 2.09×10−3

RPSO 6.58×10−18 0.24×10−18 4.61×10−1 1.03×10−1 2.91×101 1.04×101 1.02×10−2 1.78×10−3

IPSO 5.01×10−18 0.21×10−18 1.74×10−1 0.78×10−1 4.68×101 0.97×101 8.92×10−3 3.12×10−3

HPSO 1.87×10−18 0.13×10−18 5.51×10−3 1.98×10−3 2.32×101 0.96×101 5.92×10−3 2.15×10−3

a local optima, its local information will be also slowly
spread in the whole swarm. In a word, the slow spreading
of local information among the swarm results in a high
success rate. While in IPSO, the success rate is guaranteed
by the dynamical changing network topology which helps
avoid the local optima.

The evolving process of different algorithms are shown
in Fig. 2, the mean and standard deviation values of the
best particle at the maximum iteration over the successful
runs are shown in Table 3. Obviously, except the unimodel
function f1 whose best value is obtained by LWPSO, the
proposed HPSO achieves higher solution accuracy than
all the other algorithms. From Fig. 2, it is observed
that FPSO and LWPSO converge faster than the other
PSOs in the beginning, then the population stay on a
poor optima especially in multimodel functions f3 and
f4, thus the mean values of FPSO and LWPSO in Table
3 are the worst. Compared with RPSO and SFPSO,
the better performance of HPSO rely on two reasons:
Firstly, in HPSO, the homogeneous degree distribution
of regular networks implies that each particle has strong
exploitation capability and weak exploration ability, while
the heterogeneous degree distribution of scale-free network
means the hub nodes have strong exploration ability and the
low degree nodes have good exploitation ability, thus the
hybrid network can balance the exploration-exploitation
relation. Secondly, according to Eq. (2), in the initial stage,
the current position of each particle is greatly influenced
by its last position. When iteration is increased, the inertia
weight is reduced, then the particle could learn more from
the whole swarm to escape from the local optima.

Now, the convergence rate T , defined as the number of
iterations required to accomplish the goal in Table 1, are
show in Table 2. Obviously, the HPSO doesn’t have the
fast convergence rate, while it could find the best solution
as shown in Table 3, thus a little heavy computation
complexity is still worthy.

4. Conclusion

In the neighborhood design of PSO, the regular
network whose homogeneous degree distribution implies
strong exploitation capability and scale-free network with
diversity exploration ability are mixed to form a hybrid
network topology. Simulation results show that the
proposed PSO finds solutions with better quality and higher
success rate in multimodel problems than the traditional
PSOs with fully connected networks.
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Figure 2: The algorithm evolving process versus iterations
on different benchmark functions
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