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Abstract– This paper offers a method for multiple soft 
fault diagnosis of nonlinear analog circuits using the 
continuation (homotopy) approach. The considered soft 
faults include both slight and considerable deviations from 
the tolerance ranges. The method enables us to locate the 
faulty elements and evaluate the parameters both the faulty 
elements and the other elements considered as possible 
faulty. An important property of the method is its 
orientation on finding multiple solutions of the nonlinear 
diagnostic equation. As a result, it is able to find different 
sets of the parameters which satisfy the diagnostic test, 
rather than one specific set. The developed method is 
especially useful at the pre-production stage, where 
corrections of the technological process are possible and 
the diagnostic time is not crucial. To illustrate the proposed 
approach, a numerical example is given. 
 
1. Introduction 

 
Fault diagnosis of analog circuits is an important 

problem in the design and testing of electronic devices 
[1]-[7]. If circuit simulations take place after any testing, 
the diagnosis method is classified as the simulation-after-
test (SAT) approach. A fault is called soft when the 
parameter deviates from its tolerance range, but does not 
produce a short circuit or an open circuit. Otherwise, 
when a fault leads to open nodes, shorts between nodes or 
other topological changes in a circuit, it is called 
catastrophic. Generally, fault diagnosis includes detecting 
faulty circuits, locating (identification) faulty elements 
and determinating their parameters. 

During the last several years, many methods devoted to 
soft fault diagnosis of analog circuits have been developed 
[6]-[13]. Appropriate tools for soft-fault diagnosis are SAT 
methods, based on measurements at some test points and 
analyses of the circuit under test. Most of the works 
address only the case when just one element is faulty. 
Several papers have been focused on the multiple fault 
diagnosis, e.g. [9]-[13]. 

Although many achievements in this field have been 
made, the problem is still open and no fully automatic 
method is available for analog circuits. 

Many diagnostic methods employ linearized test 
equations. Consequently, they work correctly only if the 
parameters are slightly drifted from their tolerance ranges. 

The approach proposed in this paper does not utilize such 
simplification, enabling us to diagnose larger faults and 
evaluate the parameters of all elements in the set of 
elements considered as possible faulty. The number of 
faulty elements in this set does not influence significantly 
the time consumed by the method. 

An important property of the method proposed in this 
paper is its orientation on finding multiple solutions of the 
nonlinear diagnostic equation. As a result it can find 
different sets of parameters which satisfy the test, rather 
than one specific set. 

Location (identification) of the faulty elements and 
determination of their parameters play a very important 
role at the pre-production stage, where corrections of the 
technological process are possible. In this way some 
defects of the technological process can be eliminated, 
leading to its improvement. The approach proposed in this 
paper is especially useful at this stage of the production. 
In such a case, the time consumed by the diagnostic 
method is not crucial. 

Let us consider a nonlinear resistive circuit driven by 
DC independent sources, e.g. a diode-transistor one. 
Suppose that n  circuit elements, specified by parameters 

nx,,x K1  such as resistances, factors of controlled 
sources, β  forward factors of bipolar transistors, are 
considered as possible faulty. We wish to find the actual 
values of all the parameters. For this purpose a diagnostic 
test must be performed leading to a systems of n  
nonlinear equations in n  unknown variables nx,,x K1 . 
The test equation can be presented in the form 

                                ( ) uxf =ˆ  ,                                   (1) 

where [ ] n
n Rxxˆ ∈= T

1 Lx  is a vector of the parameters, 

[ ] n
n Ruu ∈= T

1 Lu  is a vector of the measured signals, 

( ) ( ) ( )[ ]T
1 xxxf ˆfˆfˆ nL=  is a nonlinear function mapping 

nR  into nR . Generally it is impossible to formulate the 
nonlinear functions ( )x̂fi , n,,i K1= , in explicit 
analytical form, but the values of ( )ni x,,xf K1  and their 
derivatives with respect to jx  ( )n,,j,i K1=  can be 

found numerically for given values of nx,,x K1 . For 
example, the test can be arranged as follows. Assume that 
the  nonlinear  circuit  under  test  has one accessible input 
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Fig. 1. Arrangement of a diagnostic test 

 
node and r  accessible output nodes. We apply a DC 
voltage source to the input node (see Fig. 1) and for K  
different values of this source measure the corresponding 
output voltages rv,,v K1 . As a result we obtain rK  

values of the output voltages: ( ) ( )
rr uv,,uv == 1

1
1

1 K , 
( )

( ) KK ,uv, rK
K

111 +−= , ( )
Kr

K
r uv = . This test enables 

us to perform the diagnosis of a circuit with rKn ≤  
elements considered as possible faulty. 
Some other appropriate variants of the test can be 
arranged. 

In this paper we propose the continuation (homotopy) 
method [14]-[15] for finding multiple solutions of the 
diagnostic equation (1). The idea of the method is as 
follows. To solve an equation ( ) 0=xg  a parameter λ  is 
embedded into this equation to obtain a new one 

                               ( ) 0=λ,xh  ,                                 (2) 
called a homotopy equation, such that for 0=λ , 
( ) 0=λ,xh  can be easily solved and for 1=λ  it reduces 

to the original equation ( ) 0=xg . The augmented 
equation (2) is deformed as the parameter λ  varies. At 
each stage of the deformation the corresponding solution 
is calculated, taking into account the previous solution. 
The Newton-Raphson method can be used for this purpose. 
As a result a solution (homotopy) path is traced and each 
intersection of the path with 1=λ  plane is a solution of 
the diagnostic equation. 
 
2. Fault Diagnosis 

 
Let us consider a circuit belonging to the class defined 

in Section 1 and assume that the parameters nx,,x K1  

have their nominal values ( )0xx ˆˆ = . We analyse this 
circuit and find the output signals leading to ( )0uu = . 
Thus, the equation 

                               ( )( ) ( )00 uxf =ˆ                                (3) 
holds. For the diagnostic equation (1) repeated below 

                                ( ) uxf =ˆ  ,                                   (4) 
we form the Newton homotopy [14] 

                               ( ) 0=λ,x̂h  ,                                 (5) 
where 

                 ( ) ( ) ( ) ( )( )00 uuuxfxh −−−= λλ ˆ,ˆ  .           (6) 

Note that for 0=λ  the equation specified by (5) and (6) 
reduces to the equation ( ) ( )0uxf =ˆ  having the known 

solution ( )0x̂ , whereas for 1=λ  it becomes the original 
diagnostic equation. Denote λ=+1nx  and form an 

augmented vector [ ]T
11 += nn xxx Lx . Then the 

homotopy equation can be written as 
                                     ( ) 0=xĥ  .                               (7) 

Equation (7) represents a system of n  nonlinear scalar 
equations in 1+n  variables. As λ=+1nx  varies, starting 
from 01 =+nx , the solution of (7) traces a homotopy path. 
Each intersection of this path with the 11 =+nx  plane is a 
solution of the diagnostic equation (1). If there are several 
intersection points, then the test equation has several 
different solutions. Let us parameterize the path with 
respect to arc length [15]-[16]. This is the standard 
treatment of representing a path in parametric coordinates 

( )sxx = . If 

               1
d

d
d

d
d
d 2

1
22

1 =





+






+






 +

s
x

s
x

s
x nnL  , 

then s  is the arc length of the path. Using the 
parameterization we form the set of equations 

                                  ( ) 0=xĥ  ,                                  (8) 

                                1
d
d1

1

2

=





∑

+

=

n

i

i

s
x  .                           (9) 

As jss = , then ( )jxx = . The derivative 
s
xi

d
d  at 1+= jss , 

labeled 
( )1

d
d +









j
i

s
x , can be expressed in terms of ( )1+j

ix  

and ( )j
ix  using the approximate formula 

       
( )

( ) ( )( ) n,,i,xx
hs

x j
i

j
i

j
i K11

d
d 1

1

=−=





 +

+

 ,       (10) 

where jj ssh −= +1 . Using (10) we formulate the set of 

equations (8)-(9) at 1+= jss  as follows 

                              ( )( ) 0=+1jxw  ,                             (11) 
where 

               ( )( )

( ) ( )( )
( ) ( )( )
( ) ( )( )

























−−

=

∑
+

=

+

+
+

+

+
+

+

+

1

1

221

1
1

1
1

1
1

1
11

1

n

i

j
i

j
i

j
n

j
n

j
n

j

j

hxx

x,,xĥ

x,,xĥ

K

K

xw  .      (12) 

To simplify the notation we denote 
( ) ( )[ ] [ ]T

11
T1

1
1

1 +
+
+

+ == n
j

n
j zzxx LL z  and ( )

i
j

i Xx = . As a 
result the equation (11) becomes 
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


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1

1
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11

111

n

i
ii

nn

n

hXz

z,,zĥ

z,,zĥ

K

K

zw  .            (13) 

To solve the equation (13) we apply the Newton-Raphson 
method 
                      ( ) ( ) ( )( ) ( )( )mmmm zwzJzz 11 −+ −=  ,           (14) 
where m  is the index of iteration. The Jacoby matrix is  

( )( )

( ) ( ) ( )

























−−−
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

++

+

+

1111

11

1

11

1

1

222 nnnn

n

n

n

nn

nn

m

XzXzXz
z
ĥ

z
ĥ

z
ĥ

...................................................................
z
ĥ

z
ĥ

z
ĥ

L

L

L

zJ  (15) 

where ( )mzz = . Using (6) and (7) we find  

          ( ) ( )
nn

n

n

n
uu

z
ĥ,,uu

z
ĥ

−=
∂
∂

−=
∂
∂

++

0

1
1

0
1

1

1 K  .      (16) 

Moreover, for n,,l,k K1=  it holds 

                                 
( ) ( )ml

k

ml

k

x
f

z
ĥ

zz ∂
∂

=
∂
∂ .                (17) 

The derivatives lk xf dd , ( )n,,l,k K1=  cannot be 
computed directly, because the function f  is not given in 
explicit analytical form. To find the derivatives (17) we 
set ( )m

ii zx = , ( )n,,i K1=  and perform the DC and 
sensitivity analyses of the tested circuit at K  values of the 
input voltages. In this way we find ( )( )mzf  and the 
sensitivities of the output voltages rv,,v K1  with respect 
to the parameters nx,,x K1  

                         
( ) ( )ml

k

ml

d

x
f

x
v

zz ∂
∂

=
∂
∂  ,                       (18) 

where dv  is an appropriate output voltage. The vector 
( )( )mzw  that appears in (14) is given by 

( )( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )
( )( )

























−−

−−−

−−−

=

∑
+

=

+

+

1

1

22

0
1

0
1

0
111

0
111

n

i
i

m
i

nn
m

nn
m

n
m

n

m
n

m
n

m

m

hXz

uuzuz,,zf

uuzuz,,zf

K

K

zw  .(19) 

To perform the computation process efficiently some 
strategy of changing the step h  has been worked out and 
applied. 

The proposed method was implemented on a computer 
using Delphi and tested on several circuits. The 

computations were executed using PC Pentium Core 2 
Duo E6400. 

 
3. Numerical Example 
 

Let us consider the transistor circuit shown in Fig. 2. 
The nominal parameters, having the tolerances 5%, are 
indicated on the circuit diagram. To test the proposed 
method two series of diagnoses were carried out. In the 
first series all resistors 71 RR −  of the circuit were 
considered as possible faulty. Under the assumption that 
the nodes A and B are accessible for measurement we 
performed the diagnostic test, as described in Section 1, 
for different values of the input voltages: ( ) V151 =inv , 
( ) V152 =inv ; ( ) V51 =inv , ( ) V152 =inv ; ( ) ( ) V7V15 21 == inin v,v ; 
( ) ( ) V4V7 21 == inin v,v . For these sets of input voltages we 

found (measured) 7 values of the output voltages. The 
measurement accuracy was assumed to be µV1 . 

A 
B 

43kΩ
R6 

270kΩ 22kΩ

T1

T2 
R2 

R5 

R3

R1

R4

2.7kΩ 

( )1
inv  

270Ω 
6.8kΩ

270Ω R7 

v2 v1 

( )2
inv

4001 =β

4002 =β

 
Fig. 2. A circuit for example 

 

We considered 20 different sets of the circuit 
parameters. In most of the cases, the method gave more 
than one set of the parameters which satisfied the test. 
Some of them can be discarded due to negative values of 
certain resistances. In each case, the correct set of 
parameters appeared in the provided results. 
One out of 20 considered cases is described below. 
The parameters are as follows: { kΩ1081 =R  ( )%60− , 

kΩ52 =R  ( )%77− , kΩ213 =R  ( )%51− , kΩ34 =R  
( )%56− , kΩ8915 .R =  ( )%30− , Ω1276 =R  ( )%53− , 

Ω1257 =R  ( )}%54− . 
Thus, all 7 elements of the set are faulty. The proposed 
method gives two sets of parameters which satisfy the 
test: ( ){ kΩ71071

1 .R = , ( ) kΩ9841
2 .R = , ( ) kΩ9201

3 .R = , 
( ) kΩ9921
4 .R = , ( ) kΩ8911

5 .R = , ( ) Ω1271
6 =R , 

( ) }Ω1251
7 =R  and ( ){ kΩ8582

1 .R = , ( ) Ω7892
2 =R , 

( ) kΩ8112
3 .R = , ( ) Ω4952

4 =R , ( ) Ω7922
5 =R , ( ) Ω512

6 =R , 
( ) }Ω642
7 =R . 

Thus, the circuit is detected as faulty. The time consumed 
by the method is 14s. The homotopy path is a closed curve, 
its projection on 1R−λ  plane is shown in Fig. 3. 
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Fig. 3. Projection of the homotopy path on 1R−λ  plane 

 

The points of intersection of the curve with the vertical 
line 1=λ  correspond to ( )1

1R  and ( )2
1R . 

The second series of the diagnoses is discussed below. 
We consider all the resistors 71 RR −  and β  forward 
factors of the transistors ( 1β  and 2β ) as possible faulty. 
The tolerances of all the parameters are 5%. We extend 
the previous test by adding a set of the input voltages: 
( ) V101 =inv , ( ) V02 =inv  and find (measure) 9 values of the 

output voltages. The measurement accuracy is assumed to 
be µV1 . We considered 10 different sets of the 
parameters. In most of the cases the method gave one set 
of the parameters which satisfied the test. In each case the 
correct set appeared in the provided results. One of the 
cases is described below. The parameters are as follows: 
{ kΩ3401 =R  ( )%26 , kΩ122 =R  ( )%45− , kΩ443 =R  
( )%2 , kΩ174 .R =  ( )%4 , kΩ525 .R =  ( )%7− , 

Ω2656 =R  ( )%2− , Ω2627 =R  ( )%3− , 3401 =β  
( )15%− , 3402 =β  ( )}%15− . Thus, 5 elements are faulty. 
The proposed method gives just one (correct) set of the 
parameters. The time consumed by the method is 27s. It is 
satisfactory at the pre-production stage. For illustration, 
the projection of the obtained homotopy path on 2βλ −  
plane is shown in Fig. 4. There is one point of intersection 
of the curve with the vertical line 1=λ , corresponding to 

3402 =β . 

λ 

β2 

-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 
0 

200 

400 

600 

800 
 

 
Fig. 4. Projection of the homotopy path on 2βλ −  plane 

 
4. Conclusion 

 
The method enables us to locate multiple soft faults of 

nonlinear analog circuits and evaluate the parameters of 
all elements considered as possible faulty. The new aspect 
of the proposed approach is its orientation on finding 

different sets of parameters, which satisfy the diagnostic 
test, rather than one specific set. The soft faults accepted 
by the method may be caused both by slight and 
considerable deviations of the circuit parameters. 
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