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Abstract—Global asymptotic stability of a nonlinear
circuit for solving the maximum flow problem, which was
first proposed by Sato et al., is studied in this paper. The
circuit consists of two independent DC voltage sources, ca-
pacitors and nonlinear resistors. It is proved rigorously that
the circuit has a unique equilibrium point which is globally
asymptotically stable. From the viewpoint of dynamical
systems, the circuit is a cooperative system, and thus some
fundamental results concerning the convergence property
of cooperative systems play important roles.

1. Introduction

From the mid-eighties, there have been many attempts
to solve optimization problems by using nonlinear circuits
[1, 2, 3, 4]. One of the most important examples is the
Hopfield neural network [1]. This continuous-time recur-
rent neural network model, which can be implemented by a
nonlinear circuit, is a powerful tool for finding an approx-
imate solution of the traveling salesman problem. Also,
some authors proposed to use SPICE, the most widely
used circuit simulator, for solving constrained optimization
problems [3, 4]

Recently, Sato et al. [5] proposed a nonlinear circuit1 for
solving the maximum flow problem [6, 7, 8]. The circuit
consists of two independent DC voltage sources, capaci-
tors and nonlinear resistors. They performed a number of
computer simulations and observed that the circuit always
converges to an equilibrium point that corresponds to the
maximum flow. However, the convergence property of the
circuit has not been completely understood so far.

In this paper, it is proved under certain mild conditions
that the nonlinear circuit proposed by Sato et al. [5] has a
unique equilibrium point which is globally asymptotically
stable. From the viewpoint of dynamical systems, the cir-
cuit belongs to an important class of dynamical systems
called the cooperative system [9, 10]. Thus the proof given
in this paper is based on a fundamental result [11] concern-
ing the global stability of cooperative systems. First, the
boundedness of state trajectories is proved. Second, it is
proved that every equilibrium point is locally asymptoti-
cally stable. Third, the uniqueness of the equilibrium point

1In their paper [5], the circuit is called the maximum-flow neural net-
work.

is proved by making use of the Brouwer degree [12, 13].
Finally, it is proved that the unique equilibrium point is
globally asymptotically stable.

2. Maximum Flow Problem

First of all, we briefly review the maximum flow prob-
lem. Let G = (V, E) be a simple directed graph where
V = {v0, v1, . . . , vn+1} is the set of vertices and E = {e1,
e2, . . . , em} is the set of edges. An edge ek ∈ E directed
from vi ∈ V to v j ∈ V is denoted by ek = (vi, v j). The set V
contains two distinguished vertices: the source v0 and the
sink vn+1. The source v0 is the vertex such that E contains
no edge directed to v0. On the other hand, the sink vn+1 is
the vertex such that E contains no edge directed from vn+1.
Throughout this paper, we assume:

Assumption 1 For each vertex vi ∈ V \ {v0, vn+1}, there is
at least one directed path from v0 to vi and there is at least
one directed path from vi to vn+1.

Let c : E → R+ be a capacity function where R+ is the
set of positive numbers. The capacity of an edge (vi, v j) is
denoted by c(vi, v j). A flow on the graph G is a function
f : E → R satisfying the following conditions:

0 ≤ f (vi, v j) ≤ c(vi, v j), ∀(vi, v j) ∈ E∑
j:(v j,vi)∈E

f (v j, vi) =
∑

j:(vi,v j)∈E
f (vi, v j), i = 1, 2, . . . , n

The maximum flow problem is to find a flow f which max-
imizes

| f | ,
∑

j:(v0,v j)∈E
f (v0, v j) .

An example of simple directed graphs is shown in Fig. 1
where v0 and v5 are the source and the sink, respectively,
and numbers beside edges represent the capacity.

3. Nonlinear Circuits for Solving Maximum Flow
Problems

Sato et al. [5] proposed a nonlinear circuit for solving
the maximum flow problem. Their circuit consists of two
independent DC voltage sources, n capacitors and m non-
linear resistors (see Fig. 2). Nodes of the circuit correspond
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Figure 1: A simple directed graph [8].
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Figure 2: A nonlinear circuit for solving the maximum flow
problem on the graph shown in Fig. 1.

to vertices of a given graph. The voltage-current character-
istic of a nonlinear resistor shown in Fig. 3 is given by

i = Aσ(v)

where σ(·) is a nonlinear function defined by

σ(y) =
1

1 + exp(−y)
.

By taking the voltages of n capacitors as variables, we
obtain the following set of differential equations:

dxi

dt
=

1
Ci

[
A0iσ(U − xi) +

n∑
j=1

{
A jiσ(x j − xi)

− Ai jσ(xi − x j)
} − Ai,n+1σ(xi − L)

]
, Fi(x),

i = 1, 2, . . . , n (1)

where xi’s are variables, U and L are constants that satisfy
the inequality

L < U,

Ci’s are positive constants, Ai j’s are nonnegative constants
defined by

Ai j =

{
c(vi, v j), if (vi, v j) ∈ E
0, otherwise .

i

vA

Figure 3: The v-i characteristic of the nonlinear resistor.

Let x(t) = (x1(t), x2(t), . . . , xn(t))T be a solution of the dif-
ferential equation (1). Then

lim
t→∞

Ai jσ(xi(t) − x j(t)), i, j = 0, 1, . . . , n

correspond to an approximate solution of the maximum
flow problem. Therefore, the circuit must converge to an
equilibrium point for any initial condition in order to work
properly as a maximum flow problem solver.

4. Global Asymptotic Stability Analysis

4.1. Boundedness of Solutions

Lemma 1 Let Ω = [L,U]n ⊂ Rn. Every solution x(t) =
(x1(t), x2(t), . . . , xn(t))T of the system (1) belongs to Ω for
all t ≥ 0 if x(0) ∈ Ω.

Proof. Let x be any point in ∂Ω where ∂Ω represents the
boundary of Ω. If xi = L then σ(U − xi), σ(x j − xi) ( j =
1, 2, . . . , n), −σ(xi− x j) ( j = 1, 2, . . . , n), and −σ(xi−L) are
all nonnegative because σ is a monotone increasing func-
tion. Hence Fi(x) is nonnegative. Similarly we can show
that Fi(x) is nonpositive if xi = U. Therefore, any solution
x(t) such that x(0) ∈ Ω cannot leave Ω. In other words, Ω
is a positively invariant set for the system (1). �

4.2. Local Asymptotic Stability of an Equilibrium
Point

Lemma 2 If x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T ∈ Ω = [L,U]n is an

equilibrium point of the system (1) then x∗ ∈ intΩ and is
locally asymptotically stable.

Proof. Suppose that the system (1) has an equilibrium point
x∗ ∈ ∂Ω. Then there exists at least one i such that x∗i = L
or x∗i = U. In the case where x∗i = L, the value of x∗j
must be L for all j such that (v j, vi) ∈ E because otherwise
Fi(x∗) is positive which contradicts the assumption that x∗

is an equilibrium point. For the same reason, the value of
x∗k must be L for all k such that (vk, v j) ∈ E and (v j, vi) ∈
E for some j. By repeating this discussion, we reach the
conclusion that there exists an integer l such that (v0, vl) ∈
E and the value of x∗l must be L. However, this implies
that Fl(x∗) is positive which leads to a contradiction. In the
case where x∗i = U, we can show in the same way as above
that there exists an integer l such that (vl, vn+1) ∈ E and the
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value of x∗l must be U, which leads to a contradiction. This
completes the proof of the first statement.

For the second statement, let us consider the Jacobian
matrix J ∈ Rn×n of the vector field F(x) = (F1(x),
F2(x), . . . , Fn(x))T at an equilibrium point x∗. The (i, j) el-
ement of J is given by

Ji j =


[−A0iσ

′(U − x∗i ) −∑n
k=1
{
Akiσ

′(x∗k − x∗i )
+Aikσ

′(x∗i − x∗k)
} − Ai,n+1σ

′(x∗i − L)
]
/Ci, i = j[

A jiσ
′(x∗j − x∗i ) + Ai jσ

′(x∗i − x∗j)
]
/Ci, i , j

(2)
Note that the nonnegative constant Ai j is positive if and
only if (vi, v j) ∈ E and that σ is a monotone increasing
function. From these facts and Assumption 1, we see that
every diagonal element of J is negative, every off-diagonal
element of J is nonnegative, and J is irreducible (for the
definition of the irreducible matrix, see [14] for example).
Also, it is easily seen from (2) that J satisfies

|Jii| ≥
n∑

j=1, j,i

|Ji j|, i = 1, 2, . . . , n .

In particular,

|Jkk | >
n∑

j=1, j,k

|Jk j|

holds for all k such that (v0, vk) ∈ E or (vk, vn+1) ∈ E. Hence
J is irreducibly diagonally dominant [14]. It is well known
that if a square matrix is irreducibly diagonally dominant
then it is nonsingular and if, in addition, its diagonal ele-
ments are negative then every eigenvalue has negative real
part [14, Theorem 4.9]. Therefore, J is nonsingular and ev-
ery eigenvalue has negative real part, which means that the
equilibrium point x∗ is locally asymptotically stable. �

4.3. Uniqueness of Equilibrium Point

Lemma 3 The system (1) has a unique equilibrium point
in Ω = [L,U]n.

Proof. We first consider the system of linear differential
equations:

dxi

dt
=

1
Ci

[
A0i(U − xi) +

n∑
j=1

{
A ji(x j − xi)

− Ai j(xi − x j)
} − Ai,n+1(xi − L)

]
, Gi(x),

i = 1, 2, . . . , n . (3)

Let C = diag(C1,C2, . . . ,Cn) ∈ Rn×n. Let a constant
matrix K = (Ki j) ∈ Rn×n and a constant vector b =
(b1, b2, . . . , bn)T ∈ Rn be defined as

Ki j =

{
−A0i −

∑n
k=1(Aki + Aik) − Ai,n+1, if i = j

A ji + Ai j, if i , j

bi = A0iU + Ai,n+1L .

Then (3) can be rewritten in a matrix form as follows:

dx
dt
= C−1(Kx + b) , G(x) . (4)

By applying the same argument as in the proof of the sec-
ond part of Lemma 2 to C−1K, we can show that C−1K
is nonsingular and every eigenvalue of C−1K has negative
real part. In particular, K is nonsingular and every eigen-
value of K is a negative real number because K is symmet-
ric. Hence the system (3) or (4) has a unique equilibrium
point x̂ = −K−1b ∈ Rn which is locally asymptotically sta-
ble. Moreover, we can show that x̂ ∈ intΩ as follows.
Suppose that x̂ < intΩ. Let i1 = argmin1≤i≤n x̂i and i2
= argmax1≤i≤n x̂i. Then, at least one of two inequalities:
x̂i1 ≤ L and x̂i2 ≥ U holds. In the former case, by apply-
ing the same argument as in the proof of the first part of
Lemma 2, we reach the conclusion that there must exist an
integer i such that (v0, vi) ∈ E and x̂i = L. However, this
leads to a contradiction. In the latter case, we reach the
conclusion in the same way that there must exist an integer
i such that (vi, vn+1) ∈ E and x̂i = U. However, this also
leads to a contradiction. Therefore we can conclude that
x̂ ∈ intΩ.

The Brouwer degree [12, 13] of the vector field G(x) =
(G1(x),G2(x), . . . ,Gn(x))T with respect to intΩ and value
0, which is denoted by d(G, intΩ, 0)2, satisfies

d(G, intΩ, 0) = sgn(|C−1K|) = sgn(|K|) = (−1)n

where the last equality follows from the fact that n eigen-
values of K are real and negative. Let H(x, s) be defined
by

H(x, s) , sF(x) + (1 − s)G(x) .

It is obvious that H(x, s) is continuous on Ω × [0, 1],
H(x, 0) = G(x) and H(x, 1) = F(x). Moreover, we claim
that H(x, s) , 0 for all x ∈ ∂Ω and all t ∈ (0, 1). To see this,
suppose that H(x̃, s̃) = 0 for some x̃ ∈ ∂Ω and s̃ ∈ (0, 1).
Then we have

F(x̃) = −1 − s̃
s̃

G(x̃) . (5)

However, since Gi(x̃) > 0 for all i such that x̃i = L and
Gi(x̃) < 0 for all i such that x̃i = U, (5) implies that there
exists at least one i such that one of two conditions:

1) x̃i = L and Fi(x̃) < 0

2) x̃i = U and Fi(x̃) > 0

holds, which contradicts Lemma 1. Therefore, two vector
fields F and G are homotopic. Since the Brouwer degree is
homotopy invariant, we have

d(F, intΩ, 0) = (−1)n . (6)

2This paper employs the notation used in [12]. In Reference [13], the
Brouwer degree is denoted by deg(G, 0, intΩ).
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On the other hand, it follows from the definition of the
Brouwer degree and Lemma 2 that

d(F, intΩ, 0) = m × (−1)n (7)

where m is the number of equilibrium points of the system
(1) in intΩ. From (6) and (7), we can conclude that m
must be one, that is, the system (1) has a unique equilibrium
point in Ω. �

4.4. Global Asymptotic Stability of the Unique Equilib-
rium Point

Theorem 1 The system (1) has a unique equilibrium point
in Ω = [L,U]n which is globally asymptotically stable.

Proof. The system (1) is a C1 cooperative system [9, 10, 11]
on Ω because

∂Fi(x)
∂x j

≥ 0

holds for all i , j and all x ∈ Ω. It is known that a C1

cooperative system in a closed box X ⊂ Rn has a globally
asymptotically stable equilibrium point if and only if two
conditions:

1) The system has a unique equilibrium point in X.

2) Every forward semi-orbit has compact closure in X.

hold [11, Theorem C]. Since we have already seen in Lem-
mas 1 through 4 that the system (1) satisfies these condi-
tions with X = Ω, it has a unique equilibrium point which
is globally asymptotically stable. �

5. Conclusion

It was proved in this paper that the nonlinear circuit for
solving the maximum flow problem has a unique equilib-
rium point which is globally asymptotically stable. The
main result of this paper is restricted to nonlinear resistors
such that the voltage-current characteristic is sigmoidal and
cannot be applied to piecewise-linear resistors. Extension
of the result to the nonlinear circuit with piecewise-linear
resistors is a future problem. Another future problem is to
clear the relation between the unique equilibrium point of
the circuit and the maximum flow of the graph.
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