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Abstract—In this study, we consider bifurcation phe-
nomena of a two-dimensional piecewise-constant driven
oscillator. The system exhibits phase-locking phenomena
in a region in the space of parameters. The region is known
as Arnold tongues. We propose a novel method in order
to analyze piecewise-constant systems with external force.
By using the method, we show theoretical result of stability
and bifurcation of the piecewise-constant system driven by
an external force, especially, we strictly derive boundaries
of Arnold tongues.

1. Introduction

In biology and engineering systems, forced synchroniza-
tion phenomena are often observed [1][2]. It is well known
that phase-locked regions called Arnold tongues are often
observed in forced synchronization [3]. It is important to
analyze Arnold tongues for understanding the forced syn-
chronizations.

In the past, piecewise-linear systems that can obtain ex-
plicit solutions in each piecewise-linear regions were of-
ten used to consider the synchronization phenomena [4][5].
However, when the solution of the each region connects
another one, it is necessary to solve implicit equations. In
other words, numerical computations are needed.

For such problems, Tsubone et al. have proposed
piecewise-constant systems [6]. Piecewise-constant sys-
tems governed by piecewise-constant vector fields have
straight orbits. Piecewise solutions can be not only deter-
mined as linear equations, the connections of solution can
be determined as explicit equation. Therefore, it is a good
example of analyzing various phenomena. In addition, rig-
orous analysis method have been proposed [7]. Analysis
of piecewise-constant systems with external force are also
reported [8]. However, it is not sufficient for consideration
of two or more dimensions non-autonomous systems.

In this paper, we consider bifurcation phenomena that
occur in a 2-D piecewise-constant driven oscillator. We
propose a novel method in order to analyze piecewise-
constant systems with external force. By using the method,
we show theoretical result of stability and bifurcation of
the piecewise-constant system with external force. Further-
more, we strictly derive boundaries of Arnold tongues.

2. 2-D Piecewise-constant Driven Oscillator

Figure 1 shows a circuit schematic diagram of a 2-D
piecewise-constant driven system. The circuit consists of
two capacitors, one VCCS having a signam characteristic
as shown in Fig. 2(a), two VCCSs having a hysteresis char-
acteristic as shown in Fig. 2(b), and an independent current
source.

The circuit dynamic is represented as follows.
C1

dv1

dt
= I1 · H(v1) + I3 · sgn(v2),

C2
dv2

dt
= I2 · H(v1) + I4 · B(T, t),

(1)

where B(T, t) is a current source as shown in Fig. 3, sgn(.)
and H(.) are voltage control current sources (VCCSs) that
have characteristic as shown in Fig. 2(a) and 2(b), respec-
tively.

B(T, t) =


1, for nT ≤ t <

(2n + 1)
2

T,

−1, for
(2n + 1)

2
T ≤ t < (n + 1)T.

(2)

In order to realize oscillation behavior, we consider fol-
lowing conditions.

I2 = −I3, I1 · I2 < 0. (3)

Here, by using the following normalized variables and pa-
rameters

τ =
I2

C1vth
t, x =

1
tth

v1, y =
C2

C1vth
v2,

α = − I1

I2
, β =

I4

I2
, T ′ =

I2

C1vth
T, (4)

Figure 1: Circuit model.
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(a) VCCS with Signum-like func-
tion.

-1

(b) VCCS with hysteresis charac-
teristic.

Figure 2: Symbols and nonlinear characteristics of VCCSs.

Figure 3: Independence current source.

we can rewrite the circuit dynamics by following normal-
ized equations,ẋ = −α · h(x) − sgn(y),

ẏ = h(x) + β · B(T ′, τ),
(5)

where “·” denote differentiation by normalized time τ and
h is a normalized hysteresis. h is switched from 1 to −1 if
x reaches to the threshold −1 and h is switched from −1 to
1 if x reaches to 1. Here, we assume a following parameter
conditions.

0 < α < 1 and 0 < β < 1. (6)

The condition (6) guarantees oscillatory dynamics. Typical
attractors are shown in Fig. 4.

(a) β � 0.2,T ′ � 35
(periodic orbit).

(b) β � 0.2,T ′ � 60
(periodic orbit).

(c) β � 0.37,T ′ � 50(chaos).

Figure 4: Typical attractors (α � 0.2).

3. Analysis Method

In order to analysis, we derive a novel calculation algo-
rithm for rigorous solutions. In our previous work [7], the
basic algorithm depends on 2-D mapping procedure related
to state variables. However, the algorithm is not suitable
for non-autonomous system, because it can not manage en-
forced switching depending on external force. So, we pro-
pose a novel algorithm based on 3-D mapping with time
variable τ.

Step 1.
We set the initial state x0 and get the dependent vari-
able l0.

lk =
−B(T ′, τ) + 1

2
· 22 +

−h(x) + 1
2

· 21

+
−sgn(y) + 1

2
· 20, (7)

where k = 0 and xk, yk and τk denote the elements of
xk, that is , xk =

t(xk, yk, τk).

Step 2.
We calculate a time τk until the lk switches to lk+1.
Assuming a trajectory started from xk arrives one of
thresholds Dx(lk),Dy(lk) and Dτ(lk), each arrival times
τx, τy and ττ are given by

τx =
Dx(lk) − xk

ax(lk)
, τy =

Dy(lk) − yk

ay(lk)
, (8)

ττ = Dτ(lk) − τk mod T ′, (9)

where ax(lk) and ay(lk) denote the elements of a(lk),
that is, a(lk) = t(ax(lk), ay(lk), aτ(lk)) and a(lk) is ob-
tained from Table 1. The actual arrival time τk that
means the switching time of lk is given by the mini-
mum of τx, τy and ττ omitting zero and negative.

τk = min{{τx, τy, ττ} ∩ {ξ ∈ R|ξ > 0}}. (10)

If all of τx, τy and ττ are not positive, it means that
the switching of lk does not occur. In such case, the
trajectory must diverge. However, the situation never
happens on the parameter conditions (6).

Step 3.
We calculate xk+1 by

xk+1 = xk + a(lk) · τk. (11)

We get the integer variable lk+1 after switching.

Step 4.
Let xk+1 and lk+1 be replaced with xk and lk, respec-
tively. Subsequently, return to Step 2.

Here, we show an example of local maps in the case
where lk change from 0.
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Table 1: Local vector fields and threshold for l
l B(T ′, τ) h(x) sgn(y) a(l) Dx(l) Dy(l) Dτ(l)
0 1 1 1 t

(
−α − 1 1 + β 1

)
-1 0 T ′/2

1 1 1 -1 t
(
−α + 1 1 + β 1

)
-1 0 T ′/2

2 1 -1 1 t
(
α − 1 −1 + β 1

)
1 0 T ′/2

3 1 -1 -1 t
(
α + 1 −1 + β 1

)
1 0 T ′/2

4 -1 1 1 t
(
−α − 1 1 − β 1

)
-1 0 T ′

5 -1 1 -1 t
(
−α + 1 1 − β 1

)
-1 0 T ′

6 -1 -1 1 t
(
α − 1 −1 − β 1

)
1 0 T ′

7 -1 -1 -1 t
(
α + 1 −1 − β 1

)
1 0 T ′

a(0) =

ax(0)
ay(0)

1

 =
−α − 1

1 + β
1

 . (12)

• Switched h(x)

t n =
(
1 0 0

)
, D = Dx(0) = −1, (13)

xi+1 =


0 0 0

− 1 + β
−α − 1

1 0

− 1
−α − 1

0 1

 xi +


−1

−−1 + β
−1 − α
− 1
−1 − α

 . (14)

• Switched sgn(y)

t n =
(
0 1 0

)
, D = Dy(0) = 0, (15)

xi+1 =


1 −−α − 1

1 + β
0

0 0 0

0
−1

1 + β
1

 xi. (16)

• Switched B(T ′, τ)

t n =
(
0 0 1

)
, D = Dτ(0) =

T ′

2
, (17)

xi+1 =

1 0 −(−α − 1)
0 1 −(1 + β)
0 0 0

 xi +


(−α − 1)

T ′

2
(1 + β)

T ′

2
T ′

2

 . (18)

To analyze periodic orbit, we define Poincare map Fp.

S p = {x|τ = nT ′}, (19)
Fp : S p → S p, (20)

(xn+1, yn+1, (n + 1)T ′) = Fp(xn, yn, nT ′). (21)

Figure 5: Bifurcation diagram(α = 0.2).

Fp is defined as composite mapping of local maps. For
Poincare map Fp, we define period m.

(xn, yn, (n + m)T ′) = Fm
p (xn, yn, nT ′) (22)

Bifurcation diagram is shown in Fig.5. Black arrow means
flow of parameter change.

3.1. Bifurcation phenomena

We consider bifurcation phenomena when parameter
values of β and T ′ are changed, respectively.

• Change β

Stability are determined by eigenvalues λ of Jacobian
from Poincare map Fp. If moduli of λ are all less than
1, the periodic orbit is stable; otherwise, it is unstable.
Eigenvalues of Fig.4(b) (β = 0.2,T ′ = 60) are

λ =

0.0308 − 0.5434i
0.0308 + 0.5434i

0

 . (23)

- 481 -



Figure 6: Movement of fixed points.

Eigenvalues of Fig.4(c) (β = 0.37,T ′ = 50) are

λ =

1.0366
0.0846

0

 . (24)

Therefore, Fig.4(b) is stable and 4(c) is unstable.
There is saddle-node bifurcation because one of
eigenvalues crosses real value 1.

• Change T ′

The fixed points are determined by

(xn, yn, (n + 1)T ′) = Fp(xn, yn, nT ′). (25)

Movement of fixed points, when T ′ is decreased, is
shown in Fig.6. Fixed point hits border y = 0 that
switches sgn(y). Then, border-collision bifurcation
happens. From yn = 0, bifurcation set of border-
collision bifurcation is

T ′ =
4(3α2 + 1)(β2 − 1) − 32αβ

(β2 − 1)(β(3α2 + 1) + α(α2 + 3))
. (26)

On yn = 0, Non-smooth saddle-node bifurcation hap-
pens because stable fixed point encounters unstable
fixed point. Therefore, co-dimensional 2 bifurcation
arises on the bifurcation set.

4. Conclusion

In the paper, we considered bifurcation phenomena that
occur in a 2-D piecewise-constant oscillator. We proposed
a novel method for piecewise-constant system with exter-
nal force. By using the method, bifurcation phenomena
from 2-D piecewise-constant driven oscillator were ana-
lyzed. Boundaries of Arnold tongues from the system were
derived.
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