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Abstract—In order to deal with nonlinear systems, en-
ergy functions have been considered in many applications.
In this paper, the aim is to set an approach based on energy
functions to understand the mechanism behind the chaotic
behavior of Chua’s Circuit. In order to explain the effect
of nonlinear resistor, different nonlinearities are considered
and the simulation results based on energy functions are
given.

1. Introduction

Euler-Lagrangian and Hamiltonian formalisms of cir-
cuits, especially nonlinear circuits, have been subject of in-
terest for decades [1–3]. One reason for this interest is their
versatility in explaining the behavior of mechanical sys-
tems and providing a sound approach to the stability anal-
ysis due to the consideration of energy function along with
differential equations defining the dynamics of the system.
As no general method can be developed for the analysis
of nonlinear circuits like the well defined, easily applicable
methods of linear circuit analysis, energy based approaches
would give insight to understanding the behavior of nonlin-
ear circuits.

The energy storage elements, namely capacitors and in-
ductors characterize the dynamics of an electric circuit. So
understanding energy exchange between these energy stor-
age elements and other elements in an electric circuit would
be functional in explaining the complex behavior of nonlin-
ear circuits. This is the main motivation of energy-based
techniques in nonlinear circuit theory [1]. Even though
Lagrangian and Hamiltonian formulations are being used
effectively in classical mechanics, this is not so easy in
electric circuits as in circuit theory it is not clear how to
define potential energy and kinetic energy. There are some
studies in the literature to overcome this difficulty [2, 3].

Also energy point of view is effective in studying the
control [4] and synchronization [5, 6] of the chaotic sys-
tems. In this work we will use energy function to investi-
gate chaos producing mechanism in Chua’s circuit. Chua’s
circuit is preferred for its simplicity and rich dynamic be-
havior and these attributes of the circuit made it very pop-
ular in chaos theory [7, 8].

Our approach will be to follow the exchange in the
Hamiltonian of the nonlinear circuit along the trajecto-
ries and investigate energy exchange in the Chua’s circuit.

Nonlinear resistance NR, is the only nonlinear element in
Chua’s circuit. If we replace it with a passive resistance
there is no interesting dynamic in the circuit as the solu-
tions decay in time and approaches zero [9]. To give an
idea of how to use Hamiltonian function, we will take this
case as our starting point and will examine the effect of the
nonlinear resistor on the energy exchange. In this work we
will examine the Rössler type chaos of Chua circuit from
energy point of view.

This paper contains the following sections: In the fol-
lowing section Hamiltonian equations and Hamiltonian of
the Chua’s Circuit is derived. In Section III, the equations
related to energy exchange of the circuit are given. Sim-
ulation results and related discussions for different Chua
diodes are presented in Section IV. Finally, the conclusions
are given in Section V.

2. Hamiltonian Equations of Chua’s Circuit

The equations related to Chua’s circuit, shown in Fig.1
are commonly given with the following state equations:

C1v̇1 = G(v2 − v1) − g(v1)
C2v̇2 = i3 −G(v2 − v1) (1)

Li̇3 = −v2

where

iR = g(vR) = GbvR +
1
2

(Ga −Gb)[|vR + E| − |vR − E|] (2)

is the node equation of the nonlinear resistor NR.
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Figure 1: Chua’s Circuit.

To derive Lagrangian of the circuit the method proposed
by Chua and McPhearson [2] has been used. Following this
method generalized coordinates (x) and generalized veloc-
ities (ẋ) are defined as follows:

xΔ=[φ1 φ2]T (3a) ẋΔ=[v1 v2]T (3b)
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where φ1 and φ2 are fluxes of the capacitors. We will omit
details in deriving Lagrangian and Euler-Lagrange equa-
tions for simplicity. As a result Lagrangian becomes,

L = 1
2

C1v2
1 +

1
2

C2v2
2 −

1
2L
[−φ2 + φ2(0) + φ3(0)

]2 (4)

where
φ3(0) = Li3(0). (5)

One could derive Hamiltonian by using below equations:

H (x, y) = yT ẋ − L (x, ẋ) (6)

y Δ=
∂L
∂ẋ

(7)

Here y denotes the generalized moments as given in [10].
Using equations (3b), (4), (6) and (7) H is derived as fol-
lows:

H = 1
2

C1v2
1 +

1
2

C2v2
2 +

1
2L
[−φ2 + φ2(0) + φ3(0)

]2 . (8)

This is Hamiltonian of the Chua’s circuit. In order to see
that it is equal to sum of energies of the dynamic elements,
it could be rewritten by using L−C2 loop equation in Chua’s
circuit (Fig.1). With this manipulation we could get below
equation which is in conventional form:

H = 1
2

C1v2
1 +

1
2

C2v2
2 +

1
2

Li23. (9)

From this point to the end of the paper we will work with
dimensionless Chua equations for simplicity. Dimension-
less form of the Chua’s equations are given as follows:

dx/dτ = α(y − x − f (x))
dy/dτ = x − y + z (10)
dz/dτ = −βy

where

f (x) = bx +
1
2

(a − b)[|x + 1| − |x − 1|] (11)

is a piecewise linear function with 3-segments and is as-
sociated with Chua’s diode. In order to obtain these equa-
tions, rescaling relations given in [7] are used. Actually
using quantities m0 and m1 instead of a and b with the re-
lations m0 = 1 + a and m1 = 1 + b gives slightly simpler
equations [8]. However for our purpose using a and b is
beneficial.

Hamiltonian can be rewritten as

H = 1
2

[
1
α

x2 + y2 +
1
β

z2
]

(12)

with a scale difference from (9) as given in [5].

3. Energy Surfaces for Double Scroll

Fig.2 gives an idea about how Hamiltonian is changing
in the phase space. In the shaded regions where Hamilto-
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Figure 2: The regions Hamiltonian is increasing are de-
noted by shaded regions where paramater values are as
(α, β, a, b)=(9, 100/7,−8/7,−5/7).

nian is increasing; Chua’s diode is providing energy to the
circuit.

To determine the separating planes in Fig.2, one need to
solve the equation dH/dτ = 0. By taking derivative of
(12) and then substituting (10) into the the result yields the
following equation

dH
dτ
= −(x − y)2 − x f (x). (13)

where the term f (x) in (13) has been given in (11).
In order to investigate the relation between the Chua’s

diode’s characteristic and the energy exchange between the
elements in the circuit, the characteristic of the diode will
be considered further and each piecewise linear part will be
considered step by step. In the upper side of Fig.3, (a) and
(b), these cases are given. The equations for (a) and (b) are
as follows, respectively:

f (x) = ax (14a)

f (x) =

⎧⎪⎪⎨⎪⎪⎩
ax, for x � −1
bx − a + b, for x < −1

(14b)

By using (13) and (14), one could derive the solution
of the equation dH/dτ = 0. Since (14b) covers (14a) as
special case we will give the result only for the case, (14b).

y =

⎧⎪⎪⎨⎪⎪⎩
x
(
1 ± √−a

)
, for x � −1

x ± √(a − b)x − bx2, for x < −1.
(15)

These equations are separatrices for the regions where
Hamiltonian is increasing. They are given in the lower side
of Fig.3. In the next section each case will be investigated
in detail.

4. The Effect of Nonlinear Resistor on Energy Function

Since (13) and as a result of this, (15) are independent of
z, x − y plane of generalized velocities is sufficient to fol-
low how Hamiltonian is changing. We will consider those
seperatix planes and their effect on energy exchange.
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Figure 3: In the upper figure each column shows the char-
acteristic of NR and the lower figure shows related x-y pro-
jection of the regions where Hamiltonian is increasing.
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(a) β = 100/7; a = −13/70
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(b) β = 100/7; a = −5/7
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(c) β = 100/7; a = −8/7
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(d) β = 23; a = −8/7

Figure 4: x-y projections of phase plane for different values
of bifurcation parameters β and a. Inset of (a), (b) and (d)
shows 3D phase space.

4.1. NR as Active Resistance

When the characteristic of NR given in Fig.3(a) is used in
Chua’s circuit the only dynamic behavior that could be ob-
served is equilibrium point. Trajectory goes to either zero
or infinity. These cases are shown in Fig.4. The value of
bifurcation parameter α is equal to 9 and initial conditions
are as (x0, y0, z0)=(0, 0.2, 0).

From this point to the end of the paper Chua’s circuit
will be simulated under below conditions for different pa-
rameter sets:

• Temporary dynamics will be excluded in the figures.

• Value of the system parameter α is fixed and it is 9.

• The values for the bifurcation paramaters a and b will
be chosen such that the system has one real and a pair
of complex conjugate roots for both parameters.

• Initial points will be chosen such that solutions won’t
be affected by unstable eigenvector. This dynamic be-
havior can be followed from Fig.4(c) and (d).

4.2. NR as 2-segment Active Resistance

In the following different parameter values will be con-
sidered.

4.2.1. a=-13/70, b=-5/7

In Fig.5 the bifurcation dynamic of the circuit is given.
For small values of β, system always gains energy, every
trajectory diverges (see Fig.5(a)). While β increasing an
unstable limit cycle occurs. System loses energy in in-
ner region and gains energy in outer region. Energy ex-
change of the system is given for two different values of
β in Fig.5 (b) and (c). Further, increasing the value of β
causes limit cycle to extinct. In this case system always
loses energy, every trajectory converges to an equilibrium
point (see Fig.5(d)).

(a) β � 13 (b) β = 14 (c) β = 23 (d) β � 24

Figure 5: Energy exchange of the system. As the sys-
tem parameter β grows, energy of the system is calculated
each time the trajectory in the first quarter crosses the line
y = x

(
1 ± √−a

)
. When system gains energy red line is

used and when system loses energy blue line is used.

4.2.2. a=-5/7, b=-13/70

In the previous case, we have observed that when inner
region loses energy and outer region gains enery an unsta-
ble limit case occurs. Using this result, first insight may
be swapping the values of the system parameters would be
enough to create a stable limit cycle. Interestingly this is
not enough. In Fig.6(a-c) the bifurcation dynamic of the
circuit is given. To understand why system couldn’t pro-
duce stable limit cycle, it is needed to examine energy ex-
change. In Fig.6(d) energy exchange of the system is plot-
ted, each time the trajectory crosses the line x = −1. It is
shown that, below the line system loses energy in the outer
region. Hovewer system gains more energy than it loses
in the above part of the outer region. If the system had lost
more than it have gained, the aim would have been reached.
In the next case we will change the system parameter a to
obtain this.

4.2.3. a=-3/7, b=-13/70

In Fig.7 the bifurcation dynamic of the circuit is given.
As a comparision with previous case for β = 21 system
gains less energy than it loses in the outer region and a
stable limit cycle formed.
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(a) β � 23 (b) β = 23 (c) β � 23 (d) β = 21

Figure 6: For different β values, energy exchange of the
system.

(a) β � 20 (b) β = 21 (c) β = 23 (d) β � 24

Figure 7: As the system parameter β grows, energy ex-
change of the system. In the figures color codes used are
same with Fig.5.

4.2.4. a=-13/70, b=-8/7

In Fig.8 the bifurcation dynamic of the circuit is given.
Starting with large β values, the system energy is always
decreasing and as β values are decreased, three regions oc-
cur, where in the in-between region the energy increases.
This case β = 19 corresponds to occurance of stable limit
cycle. As β is decreased more, interference occurs between
regions where energy is decreasing

(a) β � 20 (b) β = 19 (c) β = 14.4 (d) β = 13.85

(e) β = 13.78 (f) β = 13.761 (g) β = 13.2 (h) β � 12

Figure 8: As the system parameter β grows, dynamic of the
system. For each case the upper figure shows the energy
exchange while the lower shows solutions. In the figures
color codes used are same with Fig.5.

and increasing in the outer regions. This phenomena keeps
on as β is decreased more, interference occurs more; first

period doubling then, with period doubling cascade or sym-
metry breaking chaotic behavior raises.

In the inner region, the energy could be either increasing
or decreasing for different bifurcation parameter values, but
this does not have an effect on dynamical behavior. If in
the inner region energy is increasing while chaotic behavior
occures this chaotic behavior is robust.

5. Conclusion

In this paper, the period doubling mechanism in Chua’s
circuit is investigated utilizing energy relations for Rössler
type Chaos. Stepwise, first Hamiltonian of the circuit is
obtained and then with different Chua diodes, the relation
between the energy function and the dynamic behavior is
observed. The expectation is to set a theoretical method to
investigate chaos based on energy function.
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