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Abstract– We propose a method that allows one to 
recover the parameters of elements and architecture of 
couplings in networks of time-delay systems from time 
series. The method is based on the reconstruction of 
model delay-differential equations for the network 
elements and diagnostics of statistical significance of 
couplings. It can be applied to networks composed of 
nonidentical units with an arbitrary number of 
unidirectional and bidirectional couplings. We verify our 
method using both numerical and experimental data. 
 
1. Introduction 
 

The ensembles of coupled delay-differential equations 
are widely used in recent years for modeling and 
description of processes in various networks with a time-
delayed feedback. Studying these networks it is important 
to reconstruct both the parameters of units and 
architecture of connections from experimental time series. 
It is a complex problem, since even simple single time-
delay systems can possess high-dimensional chaotic 
dynamics. For a successful recovery of time-delay 
systems one has to use special methods [1–3]. However, 
the most of them are intended for the reconstruction of 
model equations for single time-delay systems from time 
series. The presence of links between the time-delay units 
complicates the problem of reconstruction and calls for 
the development of new methods. 

The problem of simultaneous estimation of the network 
connectivity and node parameters including the delay time 
for networks of time-delay systems has been addressed 
recently in [4]. However, this problem was solved in the 
absence of noise under the assumption that the node 
functions are invertible and the initial conditions for the 
unknown delays are chosen in a neighbor set of the true 
values. In this paper we propose a method for 
reconstructing the parameters of elements and architecture 
and strengths of couplings in networks of time-delay 
systems, which is devoid of the above mentioned 
limitations. 

The paper is organized as follows. Section 2 contains 
the method description. In Sec. 3 the method is applied for 
the reconstruction of networks of time-delay systems from 
simulated and experimental time series. In Sec. 4 we 
summarize our results. 
 

2. Method Description 
 

Let us consider a network composed of coupled time-
delay systems, each described by the equation 
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where ix R∈ , 1, , ,i M= …  M is the number of elements, 
τ i is the delay time, the parameter ε i characterizes the 
element inertial properties, :if R R→  is a nonlinear 
function, and ki, j are the coupling coefficients 
characterizing the strength of influence , i.e., from 
the jth element to the ith one. 

j → i

We propose an approach to the recovery of the element 
parameters and architecture of couplings in the network of 
time-delay systems, which involves two steps. At first we 
recover the delay time τ i of each element. Then, knowing 
τ i, we reconstruct the parameters ε i and ki, j and nonlinear 
functions f i. 
 
2.1. Recovery of Delay Time of the Elements 
 

In [2] we have shown that the time series of single 
( , 0i jk = ) time-delay systems (1) practically have no 
extrema separated in time by the delay time. If such 
systems perform chaotic oscillations, the extrema in their 
time series are located irregularly and the time intervals 
between these extrema can take different values. Taking 
into account this feature, a method for the delay time 
recovery has been proposed based on the statistical 
analysis of time intervals between extrema in the chaotic 
time series of time-delay system. Defining, for different 
values of τ, the number Ni of situations where the points 
of the time series separated in time by τ are both extremal, 
we can construct the Ni(τ) plot and recover the delay time 
τ i as the value at which the absolute minimum of Ni(τ) is 
observed. The features of Ni(τ) plot and details of its 
calculation are explained in [2]. 

Let us consider how the presence of couplings between 
the time-delay systems influences on the efficiency of this 
method. The action of other elements in the network on 
the time-delay system under consideration disturbs it and 
results in the disappearance of some extrema in the system 
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time series and appearance of new ones. Let us 
differentiate Eq. (1) with respect to t: 
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In the presence of inertial properties ( 0iε >

( )ix t

), which 
corresponds to real situations, the extrema in xi(t) are 
close to quadratic ones and therefore 0=�

( )ix t
 and 

 at the extremal points. If for ( ) 0ix t ≠�� 0=�  in a 
typical case , then, for ( ) 0ix t ≠�� 0iε ≠  the condition 
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must be fulfilled. The second term in (3) is equal to zero 
in the case of absence of couplings ( ) and in the 
case of strong couplings ensuring the synchronization of 
elements, which results in 

, 0i jk =

( )i( )jx t x=� t�

( )i

. But we have set 
 to derive the condition (3). Hence, in these 

boundary cases the first term in (3) is not equal to zero. 
By this is meant that the derivatives 

( ) 0ix t =�

x t�  and (i ix t )τ−�  
do not vanish simultaneously, i.e., there must be no 
extremum in xi(t) separated in time by τ i from a quadratic 
extremum. In the intermediate cases of weak and 
moderate couplings it is possible to find extrema in xi(t) 
separated in time by τ i. However, numerical simulation 
has shown that generally the probability of such situation 
is less than the probability to find a pair of extrema 
separated in time by iτ τ

i

≠ . As the result, the Ni(τ) plot 
will have a minimum at τ τ= . Therefore, the qualitative 
features of the Ni(τ) plot are retained for system (1) in a 
wide range of coupling coefficient values. 
 
2.2. Recovery of Other Parameters and Connections in 
the Network 
 

After reconstruction of τ i we recover the parameter ε i, 
function f i, and coupling coefficients ki, j of the ith time-
delay system (1), having at the disposal the time series of 
oscillations of all elements in the network. To do this, we 
propose the following approach. Let us write Eq. (1) as 

1( )
( ) ( ) ( ( ) ( )) ( ( )).
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If one plots the dependence of the left-hand side of 
Eq. (4) on , it will reproduce the function f i. 
Since the parameters ε i and ki, j are a priori unknown, we 
will search for them by minimizing the function 
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)2( ) (( )1 2
, , 1 , , 1 ,

1

( , )
S

i i i j i n i n i n i n
n

L k y y z zε
−

+ +
=

= − + −∑ ,    (5) 

which characterizes the distance between the points in the 
(yi,zi) plane ordered with respect to yi. Here ( )i i iy x t τ= − , 
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i i i i i, j j i
j j i

z ε x t x t k x t x t
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point serial number, and S is the number of points. In the 
case of incorrect choice of ε i and ki, j, the points in the 
(yi,zi) plane do not lie on a single-valued curve f i. Hence, 
the ,( , )i i i jL kε  value is greater than that for true ε i and ki, j. 

We set the initial conditions for ε i and ki, j and then 
refine them by the Nelder-Mead method minimizing the 
function (5), which minimum is denoted as Li, M. At 

4M >  the situation in which the method fails to reveal 
the nonexisting couplings becomes typical. These 
couplings are detected as weak ones because of indirect 
couplings via other elements. To reject insignificant 
couplings we use the method of successive trial 
elimination of coefficients ki, j from the model (1). We 
advance the hypothesis that the coupling  is absent, 
eliminate the corresponding coupling coefficient ki, j, and 
reconstruct the other parameters of the model minimizing 
the function (5), which minimum is denoted as Li, j, M-1. 
This procedure is then repeated by eliminating another ki, j 
at the fixed i, and so on for all . Note that at each 
step we assume that the ith element is not affected by only 
one of jth elements. Finally, we determine the elimination 
of which ki, j from (1) yields L  and 

estimate the statistical significance of 

j →

min ij

i

j i≠

, 1i M , , 1j ML− −=

, 1i ML L −=

, 1i nz + −

,i ML

,i nz

. In 
doing this we are guided by the following arguments. At 
large S, the differences y  and  in (5) 
are distributed according to the distribution that is close to 
the normal one. Here 

, 1i n+ − ,i ny

2S  of these differences can be 
considered as independent because they have no common 
coordinates. Besides, Li, M depends on M parameters of 
model (4). This fact reduces the number of independent 
quantities in (5) to 2S M− . Then, taking into account 
that a sum of the squares of K independent normal random 
variables is distributed according to the chi-square 
distribution with K degrees of freedom [5], we obtain that 
the Li, M values calculated at different parameters and/or in 
the presence of noise are distributed according to the chi-
square distribution with 2S M−  degrees of freedom and 
the Li, M-1 values are distributed according to the chi-square 
distribution with 2 1MS − +  degrees of freedom. 

If X is a ratio of two independent random variables 
distributed according to the chi-square distribution with v 
and w degrees of freedom, respectively, then it has the 
Fisher–Snedecor distribution with the distribution 
function 

( )
2 2v,w d
v wF X = B ,⎛

⎜
⎝ ⎠

⎞
⎟ ,                          (6) 

where B is the regularized incomplete beta function and 
( )d w= vX vX +  [6]. Hence, L has the distribution 

function (6) with ,X L=  2v = S M− +1 ,  and 
2w = S M− . 
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We denote the value of L for which ( ), 1 1v w pF L p− = − , 
where p is the statistical significance level, as L1-p. Then, 
if 1 pL L −> , one can conclude at a significance level p that 
the ith element is affected by all other elements of the 
ensemble, i.e., all . In the opposite case, we 
conclude that the coupling j → i is absent and check the 
significance of other couplings, successively eliminating 
one by one the remaining links from other elements to the 
ith one. The procedure is repeated until all couplings 
become significant. This approach allows one to recover 
the coupling architecture, parameters of all elements, and 
nonlinear functions. 

, 0i jk ≠

If the number of connections between the network 
elements is known to be small, it is preferably to use the 
method of successive trial addition of coefficients ki, j to 
the model for the reconstruction of architecture and 
strengths of couplings. First we find the minimum Li, 1 of 
function (5) assuming that all ki, j are absent in Eq. (1), i.e., 
there are no couplings. Then we enter one coefficient ki, j 
into (1) and find the minimum of function (5), which is 
denoted as Li, j, 2. This procedure is then repeated by 
entering another ki, j at the fixed i, and so on for all j i≠ . 
Finally, we determine the entering of which ki, j into the 
model yields  If ,2 , ,2min .i ij

L L= j 1 ,pL L −>  where 

,1 ,2i iL L L=  has the distribution function (6) with 
2 1v = S −  and 2 2w = S − , then the introduced coupling 

is nonzero at a significance level p. The procedure is 
repeated until the next coupling entered into the model 
turns out to be insignificant. 
 
3. Method Application 
 
3.1. Recovery of Network of Ikeda Equations 
 

Let us reconstruct the parameters of elements and 
coupling architecture in a network of Ikeda equations: 

( )

( ) ( )(
0

1( )

( ) ( ) sin ( )

.

i i i i i

M

i, j j i
j j i

)
ix t x t x t x

k x t x t

μ τ
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= − + − −

+ −∑

�
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Eq. (7) is a special case of Eq. (1) with 1iε = . Fig. 1(a) 
shows the coupling architecture generated randomly in a 
network of 10 elements. There are 40 couplings from 90 
possible ones. The parameters of the elements are 
assigned the arbitrary values in the following ranges: 

[2,5]iτ ∈ , [15,25]iμ ∈ , 0 [0, 2 ]ix π∈ , and ,i jk [0.1,0.5]∈ . 
In this case all the elements exhibit chaotic oscillations. 
Besides, each element is affected by independent white 
Gaussian noise with a zero-mean and variance . 2

iσ 0.04=
We illustrate the results of reconstruction of one of the 

elements with the parameters 7 2.15 ,τ =  7 21.67 ,μ =  
   07 3.88 ,x = 7,4 0.445 ,k = 7,k 6 0.172 ,= 7,9 0.311 ,k =  

7,10 0.435k = , and 7, 0jk = , . For various τ 
values we count the number N7 of situations where 

1, 2,3,5,8j =

7 ( )x t�  
and 7 (x t )τ−�  are simultaneously equal to zero and 
construct the N7(τ) plot [Fig. 1(b)]. For the step of τ 
variation equal to 0.01, the minimum of N7(τ) is observed 
at the true delay time 7 2.15τ τ= = . To construct this plot 
we use 40000 points of the time series, which exhibits 
about 1600 extrema. 
 

 
Fig. 1. (a) Scheme of connections in a network. 

(b) Dependence N7(τ). 7 min 7( ) (2.1N N 5)τ = . (c) Function 
f 7 recovered in the plane (y7,z7), where 7 7 (t 7 )y x τ ′= −  and 

( )7 7z x t= +� ( )7x ( ) ( )(7 7, j jk x t x′ −

0.05p =

)
10

1( 7)j j

t
= ≠

− ∑ t . (d) Results 

of estimation of the network connectivity. 
 

Fig. 1(c) shows the nonlinear function f 7 recovered 
using the method of successive trial addition of coupling 
coefficients to the model at . The function f 7 is 
constructed at the recovered parameters 7 2.15 ,τ ′ =  

7,4 0.517 ,k ′ =  7,6k 0.188 ,′ =   7,9 0.355 ,k ′ = 7,10 0.490 ,k ′ =  
and 7, 0jk ′ = , 1, 2,3,5,8j = . The approximation of the 
recovered function f 7 with a harmonic function gives us 
the parameter estimation 7 22.00μ′ =  and 07x 3.97 .′ =  
Similarly the parameters and coupling coefficients of 
other elements are reconstructed. The results of recovery 
of coupling architecture are presented in Fig. 1(d). A 
square with a horizontal coordinate i and a vertical 
coordinate j shows the influence , except for the 
squares in the diagonal, which carry no information. All 
40 existing couplings are detected at the significance level 

j i→

0.05p =  (black squares) employing either the method of 
addition of couplings or the method of successive trial 
elimination of coupling coefficients from the model. The 
lengths of time series used for constructing Figs. 1(c) and 
(d) are 10000 points. 
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3.2. Recovery of coupled experimental electronic 
oscillators with time-delayed feedback 
 

We apply the method to experimental time series 
gained from three coupled electronic oscillators with time-
delayed feedback. Fig. 2(a) shows a block diagram of the 
experimental setup involving three coupled oscillators, 
each comprising a delay line, a nonlinear device, and a 
low-frequency first-order RC filter. The delay lines and 
nonlinear devices are implemented on microcontrollers, 
while the filters are analog devices. The digital and analog 
elements of this scheme are linked via the corresponding 
analog-to-digital converters (ADC) and digital-to-analog 
converters (DAC). The oscillators are coupled via 
resistors Rc.  
 

 
Fig. 2. (a) Block diagram of the experimental setup. DL 

are the delay lines and ND are the nonlinear devices, 
(b) The chaotic time series of V1(t). (c) Dependence N1(τ). 

1min 1( ) (13.6 ms)N Nτ = . (d) Function f 1 reconstructed in 
the plane (y1,z1), where 1 1 1(y V t )τ ′= −  and 

( ) ( )
3

1 1 1 1
2j

z V t V tε
=

= + −∑� ( )(1, j jk V t′ ′

i

( ))1 .V t−  (e) Diagram 

for coupling estimation results. 
 
A model equation for the ith element in the network is 

as follows: 
( )

( ) ( )( )
1( )

( ) ( ) ( )

,

i i i i i i i

M

i, j j i
j j i

R C V t V t f V t

k V t V t
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= − + −
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where Vi(t) and Vi(t – τ i) are the delay line input and 
output voltages, respectively, τ i is the delay time, Ri and 
Ci are the resistance and capacitance, respectively, and f i 
is the transfer function of the nonlinear device. Eq. (8) is 
of form (1) with i iR Cε = . 

All the nonlinear devices have a quadratic transfer 
function. We record the chaotic signals Vi(t) of three 
nonidentical oscillators using a three-channel ADC with 
the sampling frequency equal to 10 kHz. Fig. 2(b) shows a 
part of the time series of V1(t) in the first oscillator having 

the parameters 1 13.6τ =  ms, 1 2.88ε =  ms, 

1,2 1 0.1ck R R= = , and 1,3 0k = . 
For the step of τ variation equal to the sampling time 

0.1sT =  ms, the absolute minimum of N1(τ) takes place at 
13.6τ =  ms [Fig. 2(c)]. The function f 1 recovered from 

experimental time series using the method of addition of 
coupling coefficients to the model at 0.05p =  is 
presented in Fig. 2(d). This function is constructed at the 
recovered parameters 1 13.6τ ′ =  ms, 1 2.74ε ′ =  ms, 

1,2 0.09k 8′ = , and k1,3 0′ = . It coincides closely with the 
true transfer function f1 of the nonlinear device of the first 
oscillator. The method of elimination of couplings gives 
the same results. 
 
4. Conclusion 
 

We have proposed the method for recovering the 
parameters of elements and architecture of connections in 
networks of time-delay systems from time series. The 
procedure of reconstruction involves two steps. At first we 
recover the delay time of each element using the method 
based on the statistical analysis of extrema in time series. 
At the second step we reconstruct the other parameters 
and architecture of couplings using the method based on 
the recovery of model equations for the network elements 
and diagnostics of statistical significance of couplings. To 
test the significance of links we employ the method of 
successive trial elimination or addition of couplings. 
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