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Abstract—In this paper, we propose a Chaotic
Complex-valued Bidirectional Associative Memory
(CCBAM) which can realize one-to-many associations of
multi-valued patterns. The proposed model is based on
the Bidirectional Associative Memory, and is composed
of complex-valued neurons and chaotic complex-valued
neurons. In the proposed model, associations of multi-
valued patterns are realized by using complex-valued
neurons, and one-to-many associations are realized by
using chaotic complex-valued neurons. We carried out
a series of computer experiments and confirmed that the
proposed model can realize one-to-many associations of
multi-valued patterns.

1. Introduction

Recently, neural networks are drawing much attention as
a method to realize flexible information processing. And,
the associative memories have been proposed such as the
Associatron, the Hopfield network[1], the Bidirectional
Associative Memory[2]. However, those models can not
deal with multiple-valued patterns. The associative mem-
ory based on the Self-Organizing Map[3] which can deal
with real-valued patterns has been proposed. However, it is
based on the local representation, therefore it is not robust
for damage of neurons.

As the model which can deal with multi-valued patterns,
the complex-valued neuron model has been proposed[4].
In the complex-valued model, input, output and internal
states of neurons have complex-value. The network is
composed of complex-valued neurons can deal with multi-
valued pattern[4].

On the other hand, chaos is drawing much attention as a
method to realize flexible information processing as well
as neural networks, fuzzy logic and genetic algorithms.
Chaos is a phenomenon which is observed in determin-
istic nonlinear systems and the behavior is unpredictable.
The chaotic behavior exists in many fields such as hy-
drodynamics, electric circuits and biological systems. In
particular, it is considered that chaos plays an important
role in the memory and learning of a human brain. In
order to mimic the real neurons, a chaotic neuron model
has been proposed by Aihara et al.[5]. In this model,
chaos is introduced by considering the following proper-
ties of the real neurons: (1) spatio-temporal summation,

(2) refractoriness and (3) continuous output function. It
is known that the dynamic (chaotic) association is real-
ized in the associative memories composed of the chaotic
neurons[5]. And, the Chaotic Bidirectional Associative
Memory (CBAM)[6] realizes one-to-many associations by
introducing chaotic neurons to a part of the Bidirectional
Associative Memory[2].

The chaotic complex-valued neuron model[7] which
is based on the complex-valued neuron model[4] and
the chaotic neuron model[5] has been proposed. The
chaotic complex-valued associative memory[7] composed
of chaotic complex-valued neuron models can realize dy-
namic associations of multi-valued patterns.

In this paper, we propose the Chaotic Complex-valued
Bidirectional Associative Memory (CCBAM) which can
realize one-to-many associations of multi-valued patterns.
The proposed model is based on the Bidirectional Asso-
ciative Memory, and is composed of complex-valued neu-
rons and chaotic complex-valued neurons. In the proposed
model, associations of multi-valued patterns are realized
by using complex-valued neurons, and one-to-many asso-
ciations are realized by using chaotic complex-valued neu-
rons.

2. Chaotic Complex-Valued Neuron Model

Here, we explain the chaotic complex-valued neuron
model[7] which is used in the proposed model. The chaotic
complex-valued neuron model is the extended chaotic neu-
ron model in order to deal with complex-value as internal
states and output of neurons. It is known that the chaotic
complex-valued associative memory composed of chaotic
complex-valued neurons can realize dynamic associations
of multi-valued patterns[7].

The dynamics of the chaotic complex-valued neuron is
given by

x(t + 1) = f

A(t) − α
t∑

d=0

kd x(t − d) − θ
 (1)

(A(t), x(t), θ ∈ C k, α ∈ R)

where x(t) is the output of the neuron at the time t, A(t) is
the external input at the time t, α is the scaling factor of the
refractoriness, k is the damping factor (0 < kr < 1), and θ
is the threshold of the neuron. f (·) is the output function is
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Figure 1: Structure of Proposed CCBAM.

given by

f (u) =
ηu

η − 1.0 + |u| (2)

(η ∈ R)

where η is the constant (η > 1).
If the external input A(t) is constant (A(t) = A), Eq.(1)

can be described as

x(t + 1) = f (u(t + 1)) (3)
= f (ku(t) − α f (u(t)) + (A − θ)(1 − k))
= f (ku(t) − α f (u(t)) + a)

where u(t) is the internal state of the neuron at the time t,
a(= (A − θ)(1 − k)) is the bifurcation parameter.

3. Chaotic Complex-Valued Bidirectional Associative
Memory

Here, we explain the proposed Chaotic Complex-valued
Bidirectional Associative Memory (CCBAM).

3.1. Structure

As shown in Fig.1, the proposed CCBAM has two layers
(the X-Layer and the Y-Layer) as similar as the conven-
tional Bidirectional Associative Memory[2]. The X-Layer
has two parts; (1) Key Input Part composed of complex-
valued neurons and (2) Context Part composed of chaotic
complex-valued neurons.

3.2. Learning Process

Generally, the associative memory which is trained by a
correlation matrix can not deal with one-to-many associa-
tions because the stored common data cause superimposed

patterns. In the conventional Chaotic Bidirectional Asso-
ciative Memory (CBAM)[6], each training pair is memo-
rized together with its own contextual information in order
to memorize the training set including one-to-many rela-
tions. In the proposed model, we use the same method to
memorize the training set including one-to-many relations.

When the training set including one-to-many relations
which is given by

{(X1,Y1), (X1,Y2), (X2,Y3)} (4)

is memorized in the proposed model, each training pair is
memorized together with its own contextual information.
Namely, as for the training set shown in Eq.(4), it is modi-
fied as follows:

{(X1 C1,Y1), (X1 C2,Y2), (X2 C3,Y3)} (5)

In the proposed model, the patterns with its own contex-
tual information are memorized by the orthogonal learning.
The connection weights from the X-Layer to the Y-Layer
wYX and the connection weights from the Y-Layer to the
X-Layer wXY is given by

wYX = Y(X∗X)−1X∗ (6)
wXY = X(Y∗Y)−1Y∗ (7)

where * shows the conjugate transpose, and −1 shows the
inverse. X and Y are the learning pattern matrixes, and are
given by

X = {X(1), · · · , X(p), · · · , X(P)} (8)
Y = {Y(1), · · · ,Y(p), · · · ,Y(P)} (9)

where X(p) is the pth pattern in the X-Layer, Y(p) is the
pth pattern in the Y-Layer, and P is the number of training
pairs.

3.3. Recall Process

Since we assume that contextual information is usually
unknown for users, in the recall process of the proposed
model, only the Key Input Part receives input. For example,
in the training pairs of Eq.(5), X1 is used as an input to
the proposed CCBAM. In the proposed model, when X1
is given to the network as an initial input, since the chaotic
complex-valued neurons in the Contextual Information Part
change their states by chaos, we can expect that they can
realize one-to-many associations as follows:

(X1 0, ?)→ · · · → (X1 C1,Y1)→ · · ·
→ (X1 C2,Y2)→ · · · (10)

Since the proposed CCBAM is based on the BAM, the
recall procedure of the CCBAM is almost the same as the
BAM’s.
Step 1 : Input to X-Layer

The input pattern is given to the X-Layer.
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Step 2 : Calculation of Output of Neurons in Y-Layer
The output of the neuron k in the Y-Layer xY

k (t) is given
by

xY
k (t) = f


N∑

j=1

wYX
k j xX

j (t)

 (11)

where N is the number of neurons of the X-Layer, wYX
k j is

the connection weight from the neuron j in the X-Layer
to the neuron k in the Y-Layer, xX

j (t) is the output of the
neuron j in the X-Layer at the time t, and f (·) is the output
function given by Eq.(2).
Step 3 : Calculation of Output of Neurons in X-Layer

The output of the neuron j of the Key Input Part in the
X-Layer at the time t + 1 xX

j (t + 1) is given by

xX
j (t + 1) = f


M∑

k=1

wXY
jk xY

k (t) + vA j

 (12)

where M is the number of neurons of the Y-Layer, wXY
jk is

the connection weight from the neuron k in the Y-Layer
to the neuron j in the X-Layer, v is the connection weight
from the external input, A j is the external input (See 3.4) to
the neuron j in the X-Layer.

The output of the neuron j of the Contextual Information
Part in the X-Layer xX

j (t + 1) is given by

xX
j (t + 1) = f

( M∑

k=1

wXY
jk

t∑

d=0

kd
mxY

k (t − d) (13)

−α
t∑

d=0

kd
r xX

j (t − d)
)

where km and kr are damping factors, α is the scaling factor
of the refractoriness.
Step 4 : Repeat

Steps 2 and 3 are repeated.

3.4. External Input

In the proposed model, the external input A j is always
given so that the key pattern does not change into other
patterns.

If the initial input includes noise, we can use the ini-
tial input pattern xX

j (0) as the external pattern. However,
the initial input pattern sometimes includes noise. So we
use the following pattern x̂X

j (tin) when the network becomes
stable tin as an external input.

tin = min

t



Nk∑

j=1

(x̂X
j (t) − x̂X

j (t − 1)) = 0

 (14)

where Nk is the number of neurons in the Key Input Part.
x̂X

j (t) is the quantized output of the neuron j in the X-Layer
at the time t, and is given by

x̂X
j (t) = arg min(ωs − xX

j )∗(ωs − xX
j ) (15)

(s = 1, 2, ..., S − 1)

where S is the number of states and ω is given by

ω = exp (i2π/S ) (16)

where i is the imaginary unit.

4. Computer Experiment Results

Here, we show the computer experiment results to
demonstrate the effectiveness of the proposed model.

4.1. Storage Capacity

Figure 2 shows the storage capacity of the proposed
model which has 100/200 neurons in the Key Input Part
of the X-Layer and the Y-Layer. As shown in this figure,
the storage capacity of the proposed model depends on the
number of neurons in the Key Input Part of the X-Layer
and the Y-Layer, and the number of neurons in the Context
Part in the X-Layer.

4.2. One-to-Many Association Ability

Figure 3 shows the relation between N (in 1-to-N pat-
tern pairs) and the one-to-many association ability of the
proposed model which has 100 neurons in the Key Input
Part of the X-Layer and the Y-Layer and 50 neurons in the
Context Part of the X-Layer. Figure 4 shows the relation
between the number of states S and the one-to-many asso-
ciation ability of the proposed model. As shown in these
figure, the proposed model can recall all patterns corre-
sponding to the common term if the N or S is small.

4.3. Noise Reduction Effect

Figure 5 shows the noise reduction effect of the proposed
model which has 100 neurons in the Key Input Part of the
X-Layer and the Y-Layer and 50 neurons in the Context
Part of the X-Layer.. As shown this figure, the proposed
model can recall correct patterns even when the noisy pat-
tern is given.

5. Conclusion

In this paper, we have proposed the Chaotic Complex-
valued Bidirectional Associative Memory (CCBAM)
which can realize one-to-many associations of multi-
valued patterns. The proposed model is based on the
Bidirectional Associative Memory, and is composed of
complex-valued neurons and chaotic complex-valued neu-
rons. In the proposed model, associations of multi-valued
patterns are realized by using complex-valued neurons,
and one-to-many associations are realized by using chaotic
complex-valued neurons. We carried out a series of com-
puter experiments and confirmed that the proposed model
can realize one-to-many associations of multi-valued pat-
terns.
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(a) 100 neurons in the Key Input Part in X-Layer and Y-Layer
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(b) 200 neurons in the Key Input Part in X-Layer and Y-Layer

Figure 2: Storage Capacity.
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Figure 3: Relation between N and One-to-Many Associa-
tion Ability.

References

[1] J. J. Hopfield: “Neural networks and physical systems
with emergent collective computational abilities,” Proc. Natl.

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12 14 16

1-to-1 Pattern Pairs
1-to-2 Pattern Pairs
1-to-3 Pattern Pairs

The Number of States S

R
ec

al
l R

at
e

Figure 4: Relation between the Number of States and One-
to-Many Association Ability.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

1-to-1 Pattern Pairs 

1-to-2 Pattern Pairs 

Noise Rate (%)

R
ec

al
l R

at
e

Figure 5: Noise Reduction Effect.

Acad. Sci. USA, Vol.79, pp.2554–2558, 1982.
[2] B. Kosko: “Bidirectional associative memories,” IEEE Trans.

Systems Man and Cybernetics, Vol.18, No.1, pp.49–60, 1988.
[3] H. Ichiki, M. Hagiwara and M. Nakagawa: “Kohonen feature

maps as a supervised learning machine,” Proc. IEEE Interna-
tional Conference on Neural Networks, pp.1944–1948, 1993.

[4] S. Jankowski, A. Lozowski and J. M. Zurada: “Complex-
valued multistate neural associative memory,” IEEE Trans.
Neural Networks, Vol.7, No.6, pp.1491–1496, 1996.

[5] K. Aihara, T. Takabe and M. Toyoda: “Chaotic neural net-
works,” Physics Letter A, 144, No.6, 7, pp.333–340, 1990.

[6] Y. Osana, M. Hattori, and M. Hagiwara: “Chaotic bidirec-
tional associative memory,” Proceedings of IEEE Interna-
tional Conference on Neural Networks, pp.816–821, 1996.

[7] M. Nakada and Y. Osana: “Chaotic complex-valued associa-
tive memory,” Proceedings of International Symposium on
Nonlinear Theory and its Applications, Vancouver, 2007.

- 414 -


	Navigation page
	Session at a glance
	Technical program

