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Abstract—A glia is a nervous cell in the brain. Cur- reaction. We confirm by computer simulations that the glial
rently, the glia is known as a important cell for the human’shain improves the learning performance of the MLP by
cerebration. Because the glia transmits signals to neuroosnnecting the neurons moréextively than the conven-
and other glias. We notice features of the glia and considéonal networks.
to apply it for an artificial neural network.

In this paper, we propose a Multi-layer perceptro . . .

(MLP) withppEIse glial Eha[i)n. The pulse glial cﬁain isp in—ré' MLP with pulse glial chain
spired from the features of the glia. The glia generates a e MLP is one of the feed forward neural network and
pulse by a connecting neuron and it excites neighborhogg composed by some neuron layers. The MLP is learned
neurons and glias. The pulse is generated fisrént glia, py Bp algorithm from the network error. This network can
thus, these pulses look like propagating into the networlgs|ye many kinds of tasks, for example, pattern recognition,
We show the MLP with pulse glial chain has better perpattern classification, data mining and so on. In this study,
formance than the conventional MLP by computer simulag, MLP has three layers (which is composed by 4-10-
tions. 1) and hidden layer neurons have the glial chain shown in
Fig. 1.
1. Introduction

A glia is one of the nervous cell which is existing in a
brain. The glia was known to supporting cell for neuron
works by carrying a nutrient for a long time. Recently,
some researchers discovered that this cell had high calcium
response capability, and that the calcium response was pro-
voked by the glutamic acid [1][2]. The glutamic acid is an
important ion in the brain, because this ion is one of a neu-
rotransmitter as a synapse. Thus, the glia is known to be
actively involved with information processing of the brain.

We have noticed the biological glia works in the brain
and considered that apply this work to the artificial neu-
ral network. We used a Multi-Layer Perceptron (MLP) for
one of the applying model [3]. The MLP is the most fa-
mous feed forward neural network. It is known to solve
the pattern recognition, pattern classification, data mining Figure 1: MLP with pulse glial chain.
and so on. The MLP is composed by some neurons, and
the neurons compose some layer. These neurons connect
neighborhood layer’'s neurons. The MLP is learned bg.1. Neuron updating rule
Back Propagation (BP) [4]. The network become to solve o
linearly-inseparable problem, however, the BP algorithm Th€ neuron has multi-inputs and one output. We can
often falls into local minimum. Because, the BP uses thBrocess the neuron output by the deciding weight parame-
steepest decent method. If the MLP can escape out frosr be_tween neurons. The standard neuron updating rule is
the local minimum, this network find a better solution. ~ described by Eq. (1).

In this study, we propose a MLP with pulse glial chain. n
A pattern qf glia firing looks like a pulse. The glla is fired yit+1) = f [Z W (1)X; () — 9i(t)], 1)
by connecting neuron output. If the one gliais fired, around =
glias are fired chain reaction. In our proposed glial chain,
the glia generates the pulse output by the connecting neaherey is a neuron output is an input from forward layer
ron’s huge output, after that the other glia is excited chaineuronsw is a weight paramete#,is a threshold and is

Glial chain

- 435 -



an output function. The weight parameter and the threshokhd if the glia is excited, it can not excite during period of

are learned by BP algorithm.

inactivity.

The updating rule of the hidden layer's neurons of the Next, we show the pulse outputs when the glias do not
proposed neural network with the glial chain is modified abave the relationship of each other for in Fig. 3. Each pulse

Eqg. (2).

Vitt+ 1) = £ D wi®x® - 60 +avi®|. (2
j=1

wherey : output of the gliasg : weight of glia outputs.

We use the sigmoid function for the outpiuais Eq. (3).

f@) = — 3)

l+e2

2.2. Glial network

Currently, the glia is attract researchers attentions in
biological or the medical fields. Because, the glia has
portant work for brain system. The glia has many kir
of ion receptors. Especially, the glia change?Cdensity
in the brain and this calcium response likes pulse resp
[5][6]. The C&* affect to the neuron membrane potenti
Moreover, the glia’s calcium response occur chain reac
as around glias [7][8].

In this study, we propose the pulse glial chain whict
inspired from these features of glia. The pulse glial ct
is generated by the glias. One glia generates pulse o
and the pulse is propagating in the glial chain. We de
that only one glia (first glia as the glial chain) is excit
by the neuron output, after that other glia is excited by
glia’s pulse output. Thereby, the glia’s pulse output lo
like propagating other glia passing into the glial chain. -
pulse output of first glia is defined in Eq. (4).

_ [ 1 6 <y2) 0 (0 > va )
'l’l(t + 1) - { 71//1(0, else (4)
wherey is the glia pulse outputy is an attenuated parar
eter,d, is a threshold of the exciting glia arg is a thresh-
old of a glia’s refractory period. Other glias havefer-
ent conditions of exciting. These glias are excited by
glia output. If the first glia is excited by neuron outp
this information is propagating into the glial chain. Afi
that, other glias excite and generate the pulse output. T
glias’ exciting conditions are defined in Eq. (5).
oy | L (G<walt—ixD) N (6 > D)
%“+”‘{ywm,aw ®)
whereD is number of delay and is a threshold of first gli
output. Figure 2 is an example of the glia generating pt
In this figure, the pulse conditions aye= 0.8, 6, = 0.8%,
On < y1 (every time) andD = 1. The first glia generate
pulses by neuron output. The pulses excite neighborl
glia, thereby, the pulse looks like propagating into the ¢
chain. One glia output is decreased at an exponentia

detail is the same as the pulse of Fig. 2. However, in these
pulse outputs, they are independent from other glias, thus
the pulse outputs are generated dfedent times as each
position of glia. We confirm that the relationship of the
glias is important for the MLP learning by comparing the
MLPs which are connected glias of twdidrent conditions

of the generating pulse outputs.

Figure 3: Generating the pulse at random timing.

3. Simulations

In this section, we confirm thefficiency of the glial
chain to the learning performance of the MLPs. We com-
pare the four kinds of MLPs, which are

(1) Conventional MLP

(2) MLP with pulse glial chain) = 1)
(3) MLP with pulse glial chainD = 0)
(4) MLP with random timing pulse.
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3.1. Simulation task 50000 times, after that we check the each index. We obtain
L . L the statistic results from 200 trials. From this result, we can

In this simulation, the MLP learns classification of tWOsee that the MLP with the pulse glial chain is the best result
skew tent maps. The skew tent map generates the Cha%'fcall as every index. In the conventional MLP, the learning

time series and the MLP learns time change. The skew tey%rformance is the worst, because this network often falls

map is described by Eq. (6). into local minimum during learning. The average of error
of the MLP with pulse glial chainld = 0) is worse than the
MLP with pulse glial chain = 1). We consider this rea-
6 son that this MLP D = 0) is given too much energy from
the pulse glial chain. Because the neurons in this MLP, are
given pulses as same time, thus, the MLP has large error
and learns dierent points.

2 1-A

ZOLA (L1 < p(t) < A)
gi(t+1)= oA ,

LA (A < (1) < 1)

where¢ is a chaotic oscillation as each time aAds

feature of the skew tent map. Afis changed, the skew tent
map has dferent oscillations. In the skew tent map, the
chaotic time series change betweehand 1. The neuron
inputs value are between 0 and 1. Thus, we normalize the
chaotic time series by skew tent map to between 0 and 1.

Table 1: Learning performance.
Avg. Err. | Min. Max. | St. Dev.

Figure 4 is a map of the skew tent map as the twitedént (1) | 0.0029 | 0.0001| 0.0605| 0.0079
A (2) | 0.0008 | 0.0001| 0.0202| 0.0022
" o1 o1 (3) | 0.0017 | 0.0001| 0.0209| 0.0037

: i : (4) | 0.0012 | 0.0001| 0.0603| 0.0048

|
|
:
bS8 PO IS A/ 2 74 SN W Next, we show the learning curve of the MLPs. We can
27 1 see that the MLP with pulse glial chaiD (= 1) has the
! best learning performance, and that the conventional MLP
! and the MLP with chain glial chaind{ = 0) converged
! early and can not reduce the error. We consider that the
10 ofo o conventional MLP and the MLP with pulse glial chald £
d® 1) are trapped local minimum. Comparing results, the MLP
with pulse glial chain@ = 1) can escape out from the local
Figure 4: Skew tent map. minimum.
The BP learning for the MLPs is carried out by givit 1.0000
four successive points of the chaotic time series as ar ‘ ’ ’
put and the following O or 1 as an output. The learni S——,
is repeated for 200 fferent sets which are included tw ‘\\ MLP with chain pulse glial etwork (D=1)
different chaotic time series like Fig. 5. 0.1000 ML with chain pulse sl network (5=0) ||
1 T w1 1| WL MLP with random timing pulse
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Figure 5: Learning procedure.
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3.2. Simulation results 0.0001
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First, we show statistic results which are an averag: 2
Learning time

error (Avg.), @ minimum error as 200 trials (Min.), a ma
imum error as 200 trials and a standard deviation of er
in Table 1. The MLPs learn chaotic time series dfel-

ent initial conditions. As one trial, the MLPs learn durii

Figure 6: Learning curves by the MLPs.
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3.3. Parameters dependency first glia’s pulse output excites neighborhood glia, after that

the neighborhood glia generates similar patter pulse and

Finally, we show that the parameters dependency of tt}ﬁ. . ; .
. : . is process is continued. Thus, the pulse looks like propa-
MLP with pulse glial chain. We change the number of degating into the glial chain.

lay D and the weight of glia output. Figure 7 is the av- The MLP with pulse glial chain is better than the conven-

erage of error by_ 100 trials as each condition. From thlﬁonal MLP for learning the chaotic time series. Because
figure, the error is small wheb are 1 and 9. We con-

; . the MLP with pulse glial chain has the pulse by the glia, it
sider that the MLP need above a certain energy for escai’g'helped that the MLP escaped from the local minimum.
ing out from the local minimum. I = 1, the MLP is

. | b the alial chai i fter that we researched the parameter dependency of our
given farge energy, because, tne glial chain generates pUGe |, this result, we found two characteristic parameters
as very similar timing. And also, iD = 9, the MLP is

i [ by th lias. b th lse i hich areD = 1 andD = 9. We consider that the MLP
given farge energy by three glias, because, the puise 1S G&in be obtained above a certain energy by the glial chain.
layed as propagating into the glial chain, and the first gl

L . Because the pulses are generated at similar timing as these
generates next pulse, which is shown in Fig. 8. conditions
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