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Abstract—In this paper, we discuss a controlling
method of the switching time in the state- and period-
dependent interrupted electric circuit. There are many
state- and period-dependent interrupted electric circuits in
the electrical engineering field. Therefore, the controlling
method reported in this paper is able to apply the practical
circuits such as the dc/dc converters and dc/ac inverters.
First, we explain the algorithm. Next, we show an example
of the application by demonstrating the proposed algorithm
to a simple state- and period-dependent interrupted electric
circuit with one dimensional topology. Finally we discuss
validity of the method.

1. Introduction

It is known that the power conversion circuits exhibit
rich nonlinear phenomena including the chaotic attractor
[1, 2]. In many cases, the power conversion circuits are de-
signed to prevent the unstable behavior, i.e. unstable orbits
and chaotic attractors. Therefore, it is important to con-
trol the unstable orbits including the chaotic attractors from
practical point of view.

There are many chaos controlling method applicable to
the switching circuits. For example, Ref. [3] reports a duty
ratio controlling method. Moreover, Refs. [4, 5] vary cir-
cuit parameters, such as the input voltage and reference val-
ues, for controlling the chaotic attractor. Using these con-
trolling method, we can control the chaotic attractor to the
periodic orbit.

On the other hand, a controlling method that focuses on
the switching time may not be reported. The controlling
method that focuses on the switching time has advantage in
simplicity compared with the previous methods reported in
Refs. [4, 5]. In addition, the simplicity will make possible
to controlling the unstable orbits in the switching circuits
with high-dimensional topology. Here, note that the duty

ratio controlling method proposed in Ref. [3] has a simple
algorithm, however it may not be able to apply the switch-
ing circuits with high-dimensional topology. In fact, there
are many switching circuits that with two or more dimen-
sional topology. For targeting these switching circuits, we
have to propose a simple method for controlling unstable
orbits.

This paper reports a controlling method that varying the
switching time. The application target is switching circuits
with one dimensional topology. First, we explain the al-
gorithm of the controlling method. Next, we show the test
circuit, which we apply the controlling method. Finally,
we control the unstable orbits via varying the switching
time in the test circuit. The test circuit has same switching
rule with the current-controlled dc/dc converters. There-
fore, it will be possible to control the unstable orbits in the
current-controlled dc/dc converters by improving the pro-
posed method.

2. Algorithm of the controlling method via varying the
switching time

2.1. Hybrid dynamical system with one dimensional
topology

We consider the following hybrid dynamical system with
one dimensional topology.

dx
dt

= f (x, λ)

=

{

f1(t, x, λ, λ1), subsystem-1
f2(t, x, λ, λ2), subsystem-2

(1)

Let λ be a parameter included in both subsystem-1 and
subsystem-2, whereas λ1 and λ2 are the parameters in-
cluded only in subsystem-1 or subsystem-2. Moreover, we
assume that the system has clock pulse at every period of T .
Let xn be a sampled data of the waveform at a time t = nT ,
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where n = 1, 2, 3 . . .. Therefore, the solution of Eq. (1) is
described as follows:

x(t) =
{

ϕ1(t, xn, λ, λ1), subsystem-1
ϕ2(t, xn, λ, λ2), subsystem-2 . (2)

Figure 1 shows waveform behavior. If the waveform
reaches the reference value xref , the subsystem switches
from subsystem-1 to subsystem-2. If the clock pulse
appears at every period of T , the subsystem returns to
subsystem-1.

The periodic orbit satisfies the following equations:

x(nT ) − x((n + m)T ) = 0 (3)

and
x(nT ) − x((n + l)T ) , 0, (4)

where 1 ≤ l < m. Note that x∗m(t) denotes period-m orbit
that satisfies Eqs. (3) and (4).

We discuss stability of the period-one orbit as an exam-
ple. Figure 2 shows the period-one orbit, i.e. x∗1(t), and its
perturbed orbit, i.e. x(t), where xn and x∗1n denote an initial
values at a time t = nT . Let a perturbation of the orbits at
a time t = nT be ∆xn. The perturbation ∆xn is expressed as
follows:

∆xn = xn − x∗1n . (5)

Likewise, let the perturbation at a time t = (n + 1)T be
∆xn+1. The perturbation ∆xn+1 is expressed as follows:

∆xn+1 = xn+1 − x∗1n+1. (6)

Therefore, it can be said that the orbit expressed as x(t) is
stable under ∆xn+1

∆xn
< 1, otherwise the orbit is unstable. In

the following analysis, we control the unstable orbits via
varying the switching time of the system.

2.2. Controlling method

Figure 3 shows a conceptual diagram of the controlling
method. In the figure, the black waveform denotes x∗1(t)
and gray waveform denotes x(t), respectively. Note that
subsystem-1 is kept during tON, whereas subsystem-2 is
kept during tOFF. We vary the switching time of tON based

T T T T T)(n+2)(n+1n )(n+4)(n+3

xref

1 2:

:clock
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t

Figure 1: Waveform behavior.
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Figure 2: Stability of the solution.

on the controlling theory and getting a solution x′n+1 at a
time t = (n + 1)T .

The perturbation between x′n+1 and xn+1 is described as
follows:

∆x̂n+1 = xn+1 − x′n+1. (7)

Likewise, the perturbation between x′n+1 and x∗1n+1 is de-
scribed as follows:

∆x̄n+1 = x′n+1 − x∗1n+1. (8)

Let the controlling gain be k. Therefore, perturbation of the
switching time, i.e. ∆tON, can be derived as follows:

∆tON = k∆xn. (9)

Here, Eq. (8) is rewritten as follows:

∆x̄n+1 = ∆xn+1 + ∆x̂n+1. (10)

Here, we assume that ∆x̄n+1
∆xn
= µ, where µ denotes the char-

acteristic multiplier of Eq. (10). Note that we use the
deadbeat control. Therefore, the control is completed when
µ = 0 is satisfied. We can get the controlling gain k based
on Eq. (10). By substituting the controlling gain to Eq.
(9), the perturbation of the switching time, i.e. ∆tON, is
defined. In this paper, we consider a simple hybrid dynam-
ical system with one dimensional topology. Therefore, the
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Figure 3: Controlling method of the switching time.
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characteristic multiplier of Eq. (10), i.e. µ, denotes the
slope of the return map. If the return map is defined with
exact solution, we can get µ easily, otherwise we have to
calculate the value of µ numerically based on the following
equations:

µ =
∆xn+1

∆xn

=
∂ϕ1(T, x∗n, λ, λ1)

∂x∗n
.

(11)

or

µ =
∆xn+1

∆xn

=
∂ϕ2(T − tON, x∗(tON), λ, λ2)

∂x∗(tON)
S
∂ϕ1(tON, x∗n, λ, λ1)

∂x∗n
,

(12)
where S denotes the saltation matrix. In this study, the sys-
tem has one-dimensional topology. Therefore, the saltation
matrix is to be a scalar value. The detail expression for
getting the slope of the return map, i.e. stability calcula-
tion method applicable to the non-linear hybrid dynamical
system, was reported in Ref. [7].

3. An example of the application

Figure 4 shows a simple state- and period-dependent in-
terrupted electric circuit. This circuit model has been pro-
posed in Ref. [6]. The position of the switch changes
depending on the capacitor voltage and appearance of the
clock pulse. If the capacitor voltage reaches the reference
voltage, the position of the switch changes from A’s side to
B’s side. On the other hand, if the clock pulse appears at
every period of T , the position of the switch changes from
B’s side to A’s side.

We fix the circuit parameters as follows:

R = 10[kΩ], C = 0.33[µF], E = 3.0[V], T = 2.0[ms].
(13)

The circuit equation is described as follows:

RC
dv
dt
=

{

−v + E, for switch A
−v, for switch B . (14)

C
R

E

R
R S
Q Q

A B

vr

clock
tT

v

Figure 4: State- and period-dependent interrupted electric
circuit.

The solution of Eq. (14) can be derived with exact solution
as follows:

v(t) =















(vk − E)e−
1

RC (t−kT ) + E, for switch A

vke−
1

RC (t−kT ), for switch B
, (15)

where vk is an initial capacitor voltage at a time t = kT . We
use the following dimensionless values:

x = v, xref = vref , B = E, t′ =
t

RC
, T ′ =

T
RC
, (16)

where we assume B = 1 and we rewrite t′ and T ′ as t and
T , for the sake of the simplicity.

Figure 5 shows examples of the waveform behavior. By
changing the reference voltage xr, we observe many kinds
of the periodic and non-periodic orbits. Based on Eqs. (3)
and (4), we can understand that the period-two orbit is ob-
served at xr = 0.68, the period-four orbit is observed at
xr = 0.78, the period-three orbit is observed at xr = 0.84
and the non-periodic orbit is observed at xr = 0.92. It can
be said that all of these periodic and non-periodic orbits
are the unstable period-one orbit because these orbits never
be the period-one orbit without controlling the switching
time. Therefore, we apply the controlling method to these
periodic and non-periodic orbits shown in Fig. 5. Figure
6 shows the application results. We start the controlling
around at t = 10. It is clear that the period-two, period-
four, period-three and non-periodic orbits are controlled to
the unstable period-one orbit. The test circuit shown in Fig.
4 has the same switching rule with the current-controlled
dc/dc converters. Therefore, the algorithm for controlling
unstable orbits may be applicable to the current-controlled
dc/dc converters.

4. Conclusion

We reported a controlling method of the unstable orbits
via varying the switching time in a simple hybrid dynam-
ical systems. First, we defined a hybrid dynamical sys-
tem with one dimensional topology. Next, we explained
the controlling method with focus on the switching time.
Finally, we applied the proposed controlling method to a
simple state- and period-dependent interrupted electric cir-
cuit. We confirmed validity of the controlling method.

In future, we improve the proposed method for control-
ling unstable orbits in two or more dimensional hybrid dy-
namical systems. Moreover, we have to improve the con-
trolling method for applying the hybrid dynamical system
with nonlinear characteristics.
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Figure 5: Capacitor voltage without controlling.
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