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Abstract—In our previous studies, the relationship be-
tween synchronization rates and small parameter mis-
matches on an asymmetrical coupled chaotic systems has
been investigated. As a result of investigating these sys-
tems, interesting phenomenon can be observed. We con-
sider that the phenomenon can be observed in the case of
any kinds of chaotic oscillators.

In this study, a memristor based chaotic circuit are ap-
plied to our proposed system. By this investigation, our
hypothesis for the phenomenon observed in our system is
reinforced.

1. Introduction

Many kinds of coupled chaotic systems have been pro-
posed and investigated. In these system, most important
point is that various kinds of interesting phenomena such
as spatio-temporal chaotic phenomena, clustering phenom-
ena, and so on can be observed.

In our previous studies [1]-[2], the relationship between
synchronization rates and small parameter mismatches on
an asymmetrical coupled chaotic systems has been inves-
tigated. The system is coupled globally and coupling el-
ements are resistors. Sub-circuits are divided into two
groups. The difference of two groups is circuit parame-
ters, coupled nodes or circuits as coupled elements. The
small parameter mismatches were given to the sub-circuits
as an mismatch of the oscillation frequency. As a result
of investigating these systems, interesting phenomenon can
be observed. This phenomenon is that the synchronization
rates of the one sub-circuit increases in spite of increasing
parameter mismatches of the other group. We consider that
the phenomenon can be observed in the case of any kinds
of chaotic oscillators.

On the other hand, a memristor proposed by L. O. Chua
[3] is called as the fourth fundamental circuit element. A
physical implementation was realized by a group of re-
searchers from Hewlett-Packard laboratories in 2007 [4].
Many researchers consider that the memristor has a poten-
tial of application for computer science, neural networks
and so on. However, the physical implementation is nano
scale size and is not available on the market. Some re-

searchers who are interested in a memristor developed the
emulator circuits [5]-[8]. By using the emulator, some
chaotic circuits are proposed and some applications are
proposed.

In this study, a memristor based chaotic circuit [5] are
applied to our proposed system. By this investigation, our
hypothesis for the phenomenon observed in our system is
reinforced.

2. System Model

2.1. Memristor Based Chaotic Circuit

Figure 1 shows a memristor based chaotic circuit
(MBCC) proposed by B. Muthuswamy et. al. [S]. This cir-
cuit consists of two capacitors, one inductor and one mem-
ristor. Note that the memristor used in the circuit is an ac-
tive element. By connecting a well-known passive memris-
tor with a negative resistor in parallel, the active memristor
can be realized [9].

Figure 2 shows an implementation of the memristor.
This memristor is a flux-controlled memristor. Voltage v,,
is corresponding to flux ¢ of the memristor. The character-
istic of the memristor is defined as a cubic nonlinearity for
the g-¢ function:

4(¢) = mip + mg’. M
Therefore, the memductance function W(¢) is given by :
d
Wg) = G5 = m + g’ 2)

A circuit experimental result and a computer simulation
result are shown in Fig. 3. Chaotic attractors are observed.

2.2. System Model

Figure 4 is a proposed system. This system consists of
resistors R and MBCCs. Two kinds of MBCCs (which are
called as Group A and Group B) are included in the sys-
tem. A difference between Group A and Group B is a
value of circuit parameters. The number of circuit is de-
fined as k = m + n. Namely, the numbers of Group A and
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Figure 1: Memristor Based Chaotic Circuit [5].
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Figure 2: Implementation of a Memristor.
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Figure 3: Circuit experimental result and computer simu-
lation result of a MBCC. (a) Horizontal axis is i;;. Vertical
axis is viz. Ry = 1800 [Q], Cyy = 6.8 [nF], Cyy =68 [uF],
Ly =20 [mF], R,, = 10 [kQ], C,, = 10 [nF], R, = 1000
[kQ], Ry =2 [kQ], Ry, =2 [kQ], Ry = 1.48 [Q], Ry = 30
[kQ] and Rs = 30 [kQ]. (b) Horizontal axis is xz4. Verti-
cal axis is x3. @ = 0.037, 8, = 11, B, = 10, y, = 0.28,
vy = 0.29, M} = -0.379, M, = 0.065, 6 = 0.09, ¢ = 1.1
and £ = 1.0.
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Figure 4: System Model.

Group B circuits are m and n, respectively. Additionally,
small parameter mismatches of Group A and Group B are
included in the system. Circuits are coupled globally by
resistors. This system is asymmetrically coupled chaotic
system. Now, in order to carry out computer simulations,
Circuit equations are derived.

Group A (1 <k <m):

dt R,.C,,
d 1
Cla% = E(sz — V1) = (my + 3magvi
d 1
CZa% = R_a(Vkl — Vi) — Ik 3)
1 m+n
+I_? {; Vip — (m + n)vkz}
diy
L,— = (+
a (I + p)viz

GroupB(m+ 1 <k<m+n):

g _ __va
dt R,.C,.
Clb% = Rih(vkz — i) = (my + 3mag})vi
Co 2 = v - @)
+Il—e {’ji: Vvip — (m+ n)vkz}
VI = (0 gom
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By using the following variables and parameters,

L, .
Xkl = ks Xp2 = Vi1, X3 = Vi, Xka = ik,
CZa
T = 1 9 d a = VCZLILLI _ C2a
C VCuLi Tdr T RuC T Gl
B, = Coq 1 L, 1L
T Cw %—Ra Ca’ %_Rh Ca’
1 La C2a La
6 = — N E = . = —,
R N Cy Cyp Ly,
L, L,
M, = and M, =3 .
1=m ‘,CZa > =3my 1/C2a
)

the normalized circuit equations of Group A and Group B
circuits are described as follows:
Group A (1 <k <m):

Xk = —axp,
X2 = fBa {)’a(xw - xp2) — (M + M2x/%1)xk2}’
m+n
X3 = Ya(Xi2 — Xi3) — Xpa + 0 {Z X3 —(m+ n)xk3} ,
=1
X = (1 + pr)xgs.
(6)
GroupB(m+1<k<m+n):
Xkl = —axg,
X2 = B {Yb(xm - Xxi2) — (M + szil)xkz},

m+n
X3 = &|vp(xi2 — Xi3) — Xps + 5{2 X3 — (m+ n)xk3}] ,

i=1

Xra = L(1 + gr)xgs.

@)
where k = 1,2,3,---,m+n, i.e. the number of Group A cir-
cuits is m, the number of Group B circuits is n, and p; and
qy are introduced to give parameter mismatches of the os-
cillation frequencies. By using these equations, computer
simulations are carried out.

3. Computer Simulations

Figure 5 shows the voltage differences between two
MBCC:s in the case of using following initial values and
parameters.

x1(0) = 0.0, x;2(0) = 0.1 +0.1 -k, x33(0) = 0.0,

x4(0) =00, m=2,n=3, a=0.037, B, = 11,

By =10, v, =0.28, v, =029, 6§ =0.09, ¢ = 1.1,

=1.0, pr =0.01(k—1) and g, = Qp(k —1).

3

Vertical axes show voltage differences and horizontal axes
show time. Namely, in the case of synchronizing two
MBCCs, the amplitude becomes zero. First graph x; — x;
shows a voltage difference between the two MBCCs of

X1 — X2 b —H # Ht
J00 03 A A DA
X3 — X4 # H—h H +

X4 — X5 " 4 *

Figure 5: Voltage differences between two circuits. a =
0.037, 8, = 11, B, = 10, y, = 0.28, v, = 0.29, § = 0.09,
e=1.1,{=1.0and Q, = 0.005.
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Figure 6: Voltage differences between two circuits. a =
0.037, B, = 11, B, = 10, y, = 0.28, v, = 0.29, 6 = 0.09,
e=1.1and ¢ =1.0.

Group A. Synchronizations and un-synchronized burst ap-
pear alternately in a random way. Note that this synchro-
nization is called as a quasi-synchronization. The second
graph x, — x3 shows a voltage difference between a MBCC
of Group A and a MBCC of Group B. These are not syn-
chronized at all. The third and fourth graphs x3 — x4 and
x4 — x5 show voltage differences between two MBCCs of
Group B.

By increasing Q, which is corresponding to small pa-
rameter mismatches of Group B as shown in Fig. 6, un-
synchronized bursts of Group A and B are decreased and
increased, respectively.

In order to investigate this relationship, the synchroniza-
tion is defined as following inequality.

|xk2 = Xger1y2l < 0.3 9

Figure 7 shows a relationship between synchronization
rates and Qj. The synchronization rate is defined as a ratio
of synchronization time and total time of the calculation.
In O, = 0, it means parameter mismatches free, a synchro-

-473 -



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

3

PP N

0.1 P00 0000000000009

—

——1-2
——23

3-4
——45

0.04

0.06

0%
Mo " o

A

0.08 0.1

Figure 7: Relationship between synchronization rates and small parameter mismatches Q,. Horizontal axis is Oy, Vertical
axis is a synchronization rate. @ = 0.037, 8, = 11, 8, = 10, y, = 0.28, v, = 0.29, 6 = 0.09, € = 1.1 and ¢ = 1.0. Initial
values are set as xz; = 0.0, xp = 0.1 + 0.1 = k xz; = 0.0 and xz; = 0.0. Simulation time of each parameter is 100000.

nization rate of Group A is about 0.4, a synchronization rate
between Group A and B is about 0.1 and a synchronization
rate of Group B is about 0.8. In Q;, = 0.001, MBCCs be-
come periodic oscillation states. Therefore, very high or
low rates are observed. Namely, the case of synchronizing
two MBCC:s perfectly becomes very high rate, and the case
of phase shifted synchronization like an anti-phase syn-
chronization becomes very low rate. By increasing Q) from
0O, = 0.001 to Q; = 0.083, a synchronization rate of Group
A is increased and synchronization rates of Group B are
decreased. In a area between Q;, = 0.084 and O, = 0.090,
MBCCs become periodic oscillation states. In the case of
Q) = 0.090 and more, MBCCs do not oscillate.

In previous studies, similar results are obtained in other
systems. We have hypothesized that this phenomenon can
be observed all kinds of chaotic coupled element of the
same couple system. This result reinforces this hypothe-
sis.

4. Conclusions

In this study, in order to verifier the phenomenon of pre-
vious studies, relationship between synchronization rates
and parameter mismatches in coupled chaotic circuits using
memristors. In the case of five circuits, we confirmed a phe-
nomenon similar to our previous studies in computer simu-
lations. By this result, our hypothesis for the phenomenon
observed in our system is reinforced.
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