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Abstract—The social consensus formation process can
be modeled by individuals exchanging opinions in a net-
worked environment. This paper discusses the structural
properties of social networks that affect the rate of con-
sensus formation. Particularly, it is found that the degree
distribution and degree mixing pattern of a social network
play important roles in accelerating or decelerating the con-
sensus formation process.

1. Introduction

A social network consists of a group of individuals who
interact with each other. Social consensus is the agreement
on certain opinion by members of the social network. Un-
derstanding how the structure of social networks affects the
consensus formation process is essential in organization
management and decision making process. Recent study
models social networks as complex networks where indi-
viduals are connected through social relationships and can
exchange opinions with each other under a set of rules.

In this paper, we study the consensus process on net-
works of different topological structures using DeGroot
model [1]. It is shown that the consensus rate can be di-
rectly related to the second largest eigenvalue of the trans-
formation matrix underlying the social network [2]. How-
ever, the second largest eigenvalue does not have a con-
venient physical meaning in the context of social network.
Therefore, from a more practical aspect, we analyze how
the degree distribution and degree mixing pattern of the
network can affect the rate of social consensus formation
process.

2. Social Consensus and DeGroot Model

Consider a social community with N members (i =
1, ...,N), the opinions of the members at time t can be writ-
ten as X(t) = {x1(t), x2(t), ..., xn(t)} ∈ Rn. The members
exchange opinions iteratively with each other and update
their opinions at each time step. Finally, the opinions of all
members in the community may converge. The strict defi-
nition of consensus is ∥x(t) − x∗∥ = 0, where x∗ is the final
consensus value which eventually every member agrees on

and ∥...∥ is the norm of a vector. In practice, the opinions
of all members may take infinite time to converge to x∗.
Hence, a more practical definition of consensus can be

∥x(t) − x∗∥ ≤ ϵ, (1)

where ϵ is either an arbitrarily small positive quantity (ϵ →
0) or a real number larger than 0 [2]. Define τ as the earliest
time such that Eqn.(1) holds for all t ≥ τ. Then, τ is the
time the system approaches practical consensus.

In this paper, we use DeGroot model to simulate the con-
sensus formation process in social networks. In this model,
individuals are connected by directed edges to form a com-
plex network. At each time step t, an individual i update its
opinion xi(t) by the weighted average opinion of its neigh-
bors, including itself, i.e.,

xi(t) =
∑

j

w jix j(t − 1), (2)

where j is any individual that is connected to i by a directed
edge j → i, w ji is the weight of this edge and

∑
w ji = 1.

The DeGroot model is also commonly used in control sys-
tem to model the consensus process of robotic agents [3].
It is shown that in a directed network, the opinions of indi-
viduals converge if every set of nodes that is strongly con-
nected and closed is aperiodic [1], or if the network has
a spanning tree [4]. A social network may not fulfill the
strict convergence condition, but in most large social net-
works, the opinions of individuals almost always approach
practical consensus [5].

The DeGroot model is actually the process of applying
a transform matrix T to the vector of individual’s opinions
X, i.e., X(t) = T · X(t − 1). The transform matrix T is as-
sociated with the connection matrix A and the weights of
edges from the underlying network. The eigenvectors of T
are the non-zero vectors that, after being multiplied by T ,
remain parallel to the original vector. For each eigenvec-
tor, the corresponding eigenvalue is the factor by which the
eigenvector is scaled when multiplied by the matrix. Hence
if the system converges, the largest eigenvalue of the trans-
form matrix T is 1. Then the real part of the second largest
eigenvalue (of the eigenvector which scales slowest) of T
decides the lower bound of the consensus speed [2, 6].
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However, in a networked system, it is very difficult to
find the physical meaning of the real part of the second
largest eigenvalue of the underlying network. Therefore, in
order to facilitate better organization management and de-
cision making process, we need to find the network prop-
erties those can affect the consensus formation process in a
practical way.

3. Impact of Degree Distribution to Consensus Rate

In the DeGroot model, an individual updates its opinion
by the weighted average opinion of its neighbors. This pro-
cess is equivalent to each individual influencing its neigh-
bors in every iteration. The influence fi(t) of individual i to
the network at time t can be written as

fi(t) =
∑

j

w jixi(t), (3)

where node j is any individual that is connected to i through
an edge i → j. Also, wi j is the weight of the edge pointing
from node j to node i. In the simplest situation, wi j = 1/ki

and w ji = 1/k j, where ki and k j are the degrees of nodes i
and j.

In order to study the impact of degree distribution to the
consensus rate, we first simplify a complex network to a
smaller one where nodes are grouped by their degrees and
each group of nodes interact with other groups as a whole.
In a directed network, nodes can be grouped by their in-
degrees kin and out-degrees kout. The average opinion xkin

of nodes of in-degree kin is updated by:

xkin (t) =
1

Nkin

∑
kout

Mkoutkin

xkout (t − 1)
kin

, (4)

where Nkin is the number of nodes of in-degree kin, Mkoutkin

is the total number of edges directed from nodes of out-
degree kout to nodes of in-degree kin and xkout is the average
opinion of nodes of out-degree kout. The average influence
of nodes of out-degree kout can be written by:

fkout (t) =
1

Nkout

∑
kin

Mkoutkin

xkout (t)
kin
, (5)

where Nkout is the number of nodes of out-degree kout. Let
Pe(kout) be the probability that any edge in the network is
directed from a node of out-degree kout, i.e.,

Pe(kout) =
Mkout

M
, (6)

where Mkout is the total number of edges directed from
nodes of out-degree kout and M is the total number of edges
in the network. Also, let Pe(kout|kin) be the probability that
an edge pointing to a node of in-degree kin is directed from
a node of out-degree kout, i.e.,

Pe(kout|kin) =
Mkoutkin

Mkin

, (7)
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Figure 1: The accumulated influence Nkout fkout of each
group of individuals of out-degree kout in (a) random net-
work and (b) BA network.

where Mkin is the total number of edges pointing to nodes
of in-degree kin. If the mixing of nodes of different degrees
in the network is random, then Pe(kout) = Pe(kout|kin) for all
kin [7], i.e.,

Mkout

M
=

Mkoutkin

Mkin

. (8)

Assuming the degree mixing is random in the network, the
influence of any node of out-degree kout can be written as

fkout (t) =
kout

⟨kout⟩
xkout (t). (9)

Therefore, the expected opinion update of nodes of in-
degree kin depends only on the out-degree distribution of
the network, while the expected influence of a node is pro-
portional only to its out-degree kout. If we assume the opin-
ions of individuals in each group the same, then the average
opinion of all the individuals in the network is influenced
most strongly by the degree group with the largest accumu-
lated influence Nkout fkout .

The impact of network degree distribution to the con-
sensus rate is elaborated through simulation of DeGroot
model in two networks with different degree distributions,
i.e., a random network and a BA network generated using
the preferential attachment model [8]. The accumulated in-
fluence of each group of nodes is shown in Fig. 1. It can
be found that in the random network, nodes with medium
numbers of connections contribute most of the influence
to the network while in the BA network, nodes with the
largest and the smallest number of connections contribute
most of the influence to the network.
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Figure 2: The first 10 steps of the consensus process on ran-
dom network and BA network. (a) Convergence of mean
value of all opinions. (b) Standard deviation of all opinions.

The initial opinions of individuals X(0) in different de-
gree groups are set as

xkout =
rank of kout

maximum rank of kout
, (10)

where the out-degrees in the network are sorted in an as-
cending order, e.g., a larger degree is ranked higher. The
generated opinion is between 0 and 1. We compare the
mean value and the standard deviation of every individual’s
opinion X(t) as the DeGroot model iterates on the network.
Fig. 2 shows that opinions on random network converge
faster than those on BA networks. This is due to that the
majority of individual’s influence to the random network
are concentrated from nodes with medium numbers of de-
grees while in the BA network, individuals with largest
numbers of connections and those with smallest numbers
of connections but of great quantity differ in their initial
opinions.

The degree distribution of a social network affects the
consensus rate in such a way that if several degree groups
of individuals have strong influence to the network, the
more similar their opinions are, the faster the consensus
converges in the social network. Under our configuration
of initial opinions in Eqn.(10), networks with long-tail de-
gree distribution will always suffer from slower consensus
rate than networks with random degree distribution.

4. Impact of Degree Mixing Pattern to Consensus Rate

In the previous section, we have defined the Pe(kout|kin)
as the probability that an edge pointing to a node of in-
degree kin is directed from a node of out-degree kout.

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

k
in

ρ k in

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

k
in

ρ k in

(a) (b)

Figure 3: Degree mixing correlation ρkin between Pe(kout)
of the network and Pe(kout|kin) versus kin in (a) the Twitter
user network, (b) the randomized network.

Pe(kout|kin) also represents the proportion of information re-
ceived from nodes of out-degree kout to nodes of in-degree
kin. If Pe(kout) is consistent with Pe(kout|kin), the nodes of
in-degree kin can be considered receiving information fairly
from all the nodes in the network. If Pe(kout) is not con-
sistent with Pe(kout|kin), the nodes of in-degree kin can be
considered receiving biased information. A mixing corre-
lation ρkin is defined as the Pearson’s correlation coefficient
between Pe(kout|kin) and Pe(kout) for each group of nodes
of in-degree kin [5]. A ρkin being equal to 1 means that for
nodes of in-degree kin, the probability that any of their ad-
jacent edge is directed from nodes with out-degree kout is
the same as the probability that any edge in the network is
directed from a node of out-degree kout. A ρkin being equal
to 0 means that for nodes of in-degree kin, the probability
that any of their adjacent edge is directed from nodes with
out-degree kout has nothing to do with the degree distribu-
tion of the network.

In random network models, the degree mixing is by def-
inition random [9]. In order to find a social network with
non-random degree mixing pattern, we have obtained a
user network from the online social service Twitter. The
Twitter user network consists of more than 50,000 nodes
and 1.5 million edges. Fig. 3(a) shows the degree mix-
ing correlation ρkin in the Twitter user network. The non-
random degree mixing pattern in the Twitter user network
can be randomized through iterative edge switching pro-
cess. First, two edges with distinct sources and destina-
tions are selected. Then, the destinations of the two di-
rected edges are switched. The process is repeated until the
network is properly randomized. The randomized network
has degree distributions identical to those of the original
network. Fig. 3(b) shows the degree mixing correlation ρkin

in the randomized Twitter user network. It can be found
that the randomized Twitter user network has a more ran-
dom degree mixing pattern than the original Twitter user
network.

The DeGroot model of social consensus is simulated in
both the Twitter user network and its randomized networks.
The initial opinions of individuals are set using Eqn.(10).
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Figure 4: The first 10 steps of the consensus process on
Twitter user network and its randomized network. (a) Con-
vergence of mean value of all opinions. (b) Standard devi-
ation of all opinions.

Fig. 4 shows that the consensus formation process is faster
in the randomized network than in the Twitter user net-
work. Compared to a social network with non-random de-
gree mixing pattern, the influence that nodes in different
degree groups receive are more likely to be identical in a
network with random degree mixing pattern. Therefore,
the non-random degree mixing pattern can hinder the con-
sensus speed of the network.

5. Conclusion and Discussion

In this paper, we have introduced the social consensus
problem and discussed the network properties that may af-
fect the consensus convergence rate. The social consensus
problem can be formulated by the DeGroot model. It is
shown that the real part of the second largest eigenvalue of
the transform matrix T of the network governs the consen-
sus speed. Given a network topology that guarantees con-
sensus, some carefully selected edge weight settings may
let the system converge faster than other settings. Algo-
rithms optimizing the transform matrix of the social net-
work can find a certain configuration of edge weights that
facilitate fastest consensus rate [10]. However, neither does
the eigenvalue nor the optimized transform matrix have a
convenient physical meaning in real life.

Therefore, we have analyzed the impact of network
properties on the consensus rate in social networks from
a practical perspective. Particularly, we have found that
networks with degree distributions that results in a single
group of nodes with strong influence reach consensus faster
than networks with several groups of nodes with differed
strong influence to the network. Furthermore, we have

studied the mixing pattern between each group of nodes
having the same degrees. Individuals in a network with
random degree mixing pattern receive identical influence
from others hence reach consensus faster than individuals
in a network with non-random degree mixing pattern. Our
findings may provide a set of practical guidelines to orga-
nization managers or politicians for manipulating organiza-
tional or social structure in order to promote efficient con-
sensus formation process.
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