
Generalization Error by Langevin Equation
in Singular Learning Machines

Taruhi Iwagaki† and Sumio Watanabe‡

†Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology
4259 Nagatsuda, Midori-ku, Yokohama, 226-8503 Japan

‡Precision and Intelligence Laboratory, Tokyo Institute of Technology
4259 Nagatsuda, Midori-ku, Yokohama, 226-8503 Japan

Email: iwagaki@cs.pi.titech.ac.jp, swatanab@pi.titech.ac.jp

Abstract—The Langevin equation implies an algorithm
that can generate samples from the stationary distribution
of a biased random walk, which is equivalent to the poste-
rior distribution of Bayesian learning. The Langevin al-
gorithm uses gradient information of the target distribu-
tion; therefore it is expected to be more efficient than the
Metropolis method especially in wide parameter space of
singular learning machines e.g. neural networks. In this pa-
per, we will discuss experimental results of generalization
errors of both the Langevin algorithm and the Metropolis
method for neural networks with practical dimension.

1. Introduction

The Langevin equation is a known stochastic differential
equation as a mathematical model of Brownian motion. Its
solution satisfies the Fokker-Planck equation as a probabil-
ity density function, therefore random walking under the
Langevin equation generates same samples from the sta-
tionary distribution of the Fokker-Planck equation. By ad-
justment of a potential term in the Langevin equation, the
sampling algorithm from the Bayesian posterior distribu-
tion can be constructed and it indicates a steepest descent
method with a stochastic term.

The big problem in Bayesian learning is computing the
predictive distribution that contains high-dimensional inte-
gral, which can seldom be performed exactly and requires
some approximations. Furthermore, The non-identifiable
and non-regular models, e.g. neural networks and hidden
Markov model, have a analytic set of parameters with sin-
gularities because they have hidden variables or hierarchi-
cal structures, which affects precision of sampling algo-
rithm and estimation of generalization errors [3] [7].

Metropolis method, a basic sampling algorithm, causes
slow convergence in the high-dimensional parameter space
because a proposal candidate depends on only randomness.
On the other hand, the Langevin algorithm uses gradient
information of the target distribution in each iteration step,
hence it is expected to be more efficient than the Metropo-
lis method especially in wide parameter space of singu-
lar learning machines, but the problem of discretization of
continuous-time stochastic process is left [2] [1].

This paper aims to compare the behavior of the general-
ization errors approximated by the Langevin algorithm and
the Metropolis method for neural networks with practical
dimension, especially on the view of iteration times and
computational costs.

2. Bayesian Learning and Sampling Algorithms

2.1. Bayesian Posterior Distribution

Let Xn = {(x1, y1), (x2, y2), . . . (xn, yn)} be a set of n-
sample data, which are independently and identically gen-
erated by the true distribution q(x)q(y|x). Assume that each
xi is in RN and yi is in RM .

Let p(y|x,w) be a learning machine, and p(w) a prior
distribution on the set of parameters.

Then the Bayesian posterior distribution is defined by

p(w|Xn) =
1

Z(Xn)
p(w)

n∏

i=1

p(yi|xi,w), (1)

where

Z(Xn) =

∫
p(w)

n∏

i=1

p(yi|xi,w)dw. (2)

The Bayesian predictive distribution is also given by

p(y|x, Xn) =

∫
p(y|x,w)p(w|Xn)dw. (3)

We need samples generated by p(w|Xn) to approximate
p(y|x, Xn).

2.2. Sampling Algorithm using Langevin Equation

Let Wt ∈ Rd be a sequence of random variables on a
continuous-time stochastic process and Rt ∈ Rd a random
variable of the Gaussian distribution N(0, 2DtI) (D is a
constant value). The following stochastic differential equa-
tion is known as Langevin equation.

dWt

dt
= −∇V(Wt) +

dRt

dt
. (4)

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 403 -

The equation leads the following difference method for
computational simulation with a small αlan ∈ R. As-
sume that Rk is independently and identically generated by
N(0, I).

Wk+1 = Wk − αlan∇V(Wk) +
√

2DαlanRk. (5)

Let p(w, t) be a probability density function of the ran-
dom variable Wt. It satisfies the Fokker-Planck equation
below:

∂

∂t
p(w, t) − ∇ · (∇V(w)p(w, t)) = D4p(w, t). (6)

Assume that the limiting distribution q(w) = q(w, t) exists
in t → ∞ and q(w, t) = 0 in ‖w‖ → ∞, then we get

p(w) ∝ exp
(
−V(w)

D

)
. (7)

This equation implies that {w1,w2, . . . ,wk} are from the
limiting distribution,

{w1,w2,w3, . . . ,wk} ∼ exp
(
−V(w)

D

)
. (8)

Let D = 1, V(w) = nL(w), and

L(w) = −1
n

log p(Xn|w) − 1
n

log p(w). (9)

In this case, the limiting distribution is equivalent to the
Bayesian posterior distribution. Therefore, the Langevin
algorithm works to generate samples from the Bayesian
posterior distribution:

exp
(
−V(w)

D

)
= exp

(
log p(Xn|w) + log p(w)

)
(10)

= p(Xn|w)p(w) ∝ p(w|Xn). (11)

Summary of the Langevin algorithm is as follows:

1. Initialize w0.

2. Calculate ∇V(wk) with the current wk.

3. Set wk+1 with a random value R from N(0, I):

wk+1 = wk − αlan∇V(wk) +
√

2DαlanR. (12)

4. Go to (2).

2.3. Generalization Error

Let {w1,w2, . . .wk} be samples generated by the
Bayesian posterior distribution p(w|Xn). Then the Bayesian
conditional predictive distribution p(y|x, Xn) can be ap-
proximated as follows:

p(y|x, Xn) =

∫

W
p(y|x,w)p(w|Xn)dw (13)

' 1
k

k∑

i=1

p(y|x,wi). (14)

The generalization error between p(y|x, Xn) and the true
distribution q(y|x) can be approximated with test data
{(x1, y1), (x2, y2), . . . , (xm, ym)} as follows:

G(Xn) =

∫
q(x)q(y|x) log

q(y|x)
p(y|x, Xn)

dxdy (15)

' 1
m

m∑

i=1

log
q(yi|xi)

p(yi|xi, Xn)
. (16)

2.4. Metropolis Method

The Metropolis method generates samples {w1, . . . ,wk}
that converge in distribution to the target distribution

p(w|Xn) =
1
Z

exp (−nH(w)) , (17)

and its step-by-step instructions are the following:

1. Initialize w0.

2. Get the proposal sample w′ by adding random value
from N(0, σ2

metI) to the current sample wk.

3. Choose the new sample wk+1 according to the follow-
ing rules:

(a) In the case that H(wk) > H(w′), let wk+1 = w′

(b) In the case that H(wk) ≤ H(w′),
i. let wk+1 = w′ with probability P

ii. let wk+1 = wk with probability 1 − P

where

P = exp
(
nH(wk) − nH(w′)

)
. (18)

4. Go to (2).

3. Evaluation

3.1. Model and Setting

We use a 3-layer neural network as a learning machine

f (x,w) = tanh(B tanh(Ax)), (19)

where x ∈ RN , y ∈ RM , A ∈ M(N,H; R), B ∈ M(H, M; R),
w = (A, B). There are N input units, M output units, and H
hidden units, with tanh as an activation function.

The true model is another 3-layer neural network g(x)
with the same condition except for the number of hidden
unit, L(< H).

We consider that the set of input data {xi} are generated
by the normal distribution N(0, I) and the set of observable
data {yi} contains Gaussian noise from N(0, σ2

datI). Then
the distribution of x, the true model q(y|x), and the learning
machine p(y|x) are characterized by the distribution density
functions below:

q(x) =
1√
2πN

exp
(
−1

2
‖x‖2

)
, (20)

- 404 -

1e+02 5e+02 5e+03 5e+04

5
e

−
0

4
5

e
−

0
3

5
e

−
0

2
5

e
−

0
1

Iterration

G
e

n
e

ra
liz

a
ti
o

n
 E

rr
o

r

Theoretical Bound

Langevin alpha=1E−7

Langevin alpha=1E−6

Langevin alpha=1E−5

Metropolis sigma=1E−3

Metropolis sigma=2E−3

Metropolis sigma=4E−3

Figure 1: Generalization Errors by Iteration

q(y|x) =
1√

2πσ2
dat

M
exp

− 1
2σ2

dat

‖y − g(x)‖2
 , (21)

p(y|x,w) =
1√

2πσ2
dat

M
exp

− 1
2σ2

dat

‖y − f (x,w)‖2
 .

(22)
The learning data Xn = {(x1, y1), (x2, y2), . . . , (xn, yn)} and
the testing data are generated by q(x)p(y|x) and q(x)q(y|x)
respectively.

Let p(w) be N(0, σ2
priI) as the prior distribution. On the

setting above, V(w) is given by

V(w) =
1

2σ2
dat

n∑

i=1

‖yi − f (xi,w)‖2 +
1

2σ2
pri

‖w‖2 + const.

(23)
Then, the gradient ∇V(w) for Langevin algorithm is given
by

∂

∂w
V(w) =

1
σ2

dat

n∑

i=1

∂

∂w

(
1
2
‖yi − f (xi,w)‖2

)
+

1
σ2

pri

w,

(24)
which can be calculated as same as the back propagation
method on neural networks.

The generalization error G(Xn) also can be approximated
on asymptotic analysis:

G(Xn) ' 1
2m

m∑

i=1

g(xi) − 1
k

k∑

j=1

f (xi,w j)

2

. (25)

Now we fixed the variance of the data noise σ2
dat = 0.01,

and the variance of the prior distribution σ2
pri = 106, the

number of learning data n = 1000, the number of testing

10 20 50 100 200 500 1000 2000

5
e

−
0

4
5

e
−

0
3

5
e

−
0

2
5

e
−

0
1

Time (sec)

G
e

n
e

ra
liz

a
ti
o

n
 E

rr
o

r

Theoretical Bound

Langevin alpha=1E−7

Langevin alpha=1E−6

Langevin alpha=1E−5

Metropolis sigma=1E−3

Metropolis sigma=2E−3

Metropolis sigma=4E−3

Figure 2: Generalization Errors by Execution Time

data m = 10000. The parameters of the true model and the
initial parameters of the learning machine are generated by
the uniform distribution [0, 1.0].

The exact theoretical generalization error of neural net-
works is still unknown but the upper bound is given in [4].
To check the experimental results, we will refer the upper
bound in graphs:

EXn [G(Xn)] ≤ σ2
dat

2NH − (H − L)N
2n

. (26)

3.2. Experimental Results

3.2.1. Generalization Error by Iteration

We evaluated the generalization error by the Langevin al-
gorithm and the Metropolis method. In a log-log plot Fig.
1, the vertical axis is EXn [G(Xn)] and the horizontal axis
is iteration times. We tried to calculate the generalization
error with several parameters αlan = 10−7, 10−6, 10−5 and
σmet = 1.0 × 10−3, 2.0 × 10−3, 4.0 × 10−3, which are the
discretization coefficient and the variance of random value
to be adjusted for each algorithm. The dimension of each
layer was fixed as N = M = 10, H = 5, L = 3, and samples
are chosen per 10 iterations in 2.0 × 105 iterations. Each
average of acceptance ratio of the Metropolis method was
50.12% (σmet = 1.0 × 10−3), 18.83% (2.0 × 10−3), 2.03%
(4.0× 10−3). The final generalization error of the Langevin
algorithm with αlan = 10−6, 10−5 were EXn [G(Xn)] = 4.09×
10−4, 4.17×10−4, and they were good approximations to the
theoretical bound G(Xn) ≤ 4.000 × 10−4. On the compari-
son between the generalization errors with the most appro-
priate parameters for each algorithm, the convergence of
the Langevin algorithm was faster than one of Metropolis
method.

- 405 -

Execution Time (msec)
Langevin 66.84
Metropolis 17.31

Table 1: Execution Time per Iteration

3.2.2. Generalization Error by Execution Time

Fig. 2 is a re-scaled graph of Fig. 1 by the average of
execution time as the horizontal axis.

The execution times by iteration step of each algorithm
are different. Table 1 describes the average of execution
time on our computer system, and the Langevin algorithm
is 3.86 times slower than the Metropolis method. After
scaling, the generalization error by the Langevin algorithm
with αlan = 10−6, 10−5 still converges faster than one by the
Metropolis method with σmet = 1.0 × 10−3, 2.0 × 10−3.

4. Discussion

First, we discuss the convergence speed in initial tran-
sient phase. Fig. 1 and 2 describe that the convergence of
the Langevin algorithm in the initial phase is faster than one
of the Metropolis method. The generalization error by the
Langevin algorithm declines immediately at the beginning
of iterations but the generalization error by the Metropo-
lis method is slow in converging until around 5 × 102 it-
eration. In the Metropolis method, a proposal sample is
generated with a random value and a next sample is cho-
sen probabilistically by difference of energy. In the case
that σmet = 2.0 × 10−3, the Metropolis algorithm approxi-
mates the generalization error most accurately, but the ac-
ceptance ratio is 18.83%. We use tanh as an activation
function in this model, therefore the difference of energy
of parameters cannot be observed when parameters are far
away from the set of true parameters. This fact and high-
dimension of parameter space seem to affect gain of re-
jection. On the other hand, the Langevin algorithm uses
the gradient of the target distribution at the current sam-
ple, and therefore the Langevin algorithm seems to move
efficiently using the gradient on the same condition. How-
ever, this graph describes only efficiency of initial transient
phase, so we need to study efficiency of coverage of the
target distribution after burn-in phase. Furthermore, the
Langevin algorithm contains the problem of discretization
of continuous-time stochastic process. Some discretiza-
tion coefficient αlan cannot reproduce the continuous-time
stationary distribution [2] [1]. The Langevin Metropolis-
Hasting method was also proposed [5][6].

Second, we discuss execution costs. The Metropolis
method needs at least one forward calculation of neural net-
work to compare energy of a proposal sample with one of
a current sample. On the other hand, the Langevin algo-

rithm does not need energy but needs gradient. We use
the back propagation method to calculate the gradient in
this experiment, and it requires both forward and back-
ward calculation of neural network. The backward cal-
culation of Langevin algorithm takes additional costs than
Metropolis method, which affects execution time per iter-
ation. Depending on the additional backward calculation
costs, Langevin algorithm may lose its advantage of speed
by efficient moving, especially in the other model which
has high costs to calculate its gradient.

5. Conclusion

In this paper, we have evaluated the generalization errors
with generated samples by the Langevin algorithm and the
Metropolis method in a neural network with practical di-
mension, and compared their behavior in initial transient
phase. Our future studies are the relation between dis-
cretization parameter and its effect for the target distribu-
tion of singular learning machines.

This research was partially supported by the Ministry of
Education, Science, Sports and Culture in Japan, Grant-in-
Aid for Scientific Research 18079007.

References

[1] G. O. Roberts and R. L. Tweedie, “Exponential Con-
vergence of Langevin Diffusions and Their Discrete
Approximations,” 1995.

[2] G. O. Radford M. Neal, “Probabilistic Inference using
Markov Chain Monte Carlo Methods,” Technical re-
port, University of Toronto, 1993.

[3] S. Watanabe, “Algebraic Analysis for Nonidentifiable
Learning Machines,” Neural Computation, vol.13(4),
pp.899–933, 2001.

[4] S. Watanabe, “Learning Efficiency of Redundant Neu-
ral Networks in Bayesian Estimation,” IEEE Transac-
tions on Neural Networks, vol.12 (6), pp.1475–1486,
2001

[5] U. Grenander and M. Miller, “Representations of
Knowledge in Complex Systems,” Journal of the Royal
Statistical Society. Series B (Methodological), Vol.56
(4), pp.549–603, 1994.

[6] D. Phillips and A.Smith, “Bayesian model comparison
via jump diffusions,” Markov Chain Monte Carlo in
Practice, pp.215–239, 1996.

[7] M. Aoyagi, S. Watanabe, “Resolution of Singularities
and the Generalization Error with Bayesian Estimation
for Layered Neural Network,” IEICE Transactions on
Information and Systems, vol.J88-D-II (10), pp. 2112-
2124, 2005.

- 406 -

	Navigation page
	Session at a glance
	Technical program

