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Abstract—Simulations of Hodgkin Huxley population
dynamic networks with unidirectional connectivity and
synaptic noise indicate a new nonlocal mechanism govern-
ing the periodic activity mode: the greatest common divi-
sor (GCD) of network loops. For a stimulus to one node,
the network splits into GCD-clusters in which cluster neu-
rons are in zero-lag synchronization. For complex external
stimuli, the number of clusters can be any common divi-
sor of loops. The synchronized mode and the transients to
synchronization pinpoint the type of external stimuli. The
findings supported by an information mixing mechanism,
call for reexamining sources of correlated activity in cortex
and shorter information processing time scales.

1. Inroduction

The spiking activity of neurons within a local cortical
population is typically correlated [1, 2]. As a result, lo-
cal cortical signals are robust to noise, which is a prereq-
uisite for reliable signal processing in cortex. Under spe-
cial conditions, coherent activity in a local cortical pop-
ulation is an inevitable consequence of shared presynap-
tic input [3, 4, 5]. Nevertheless, the mechanism for the
emergence of correlation, synchronization or even nearly
zero-lag synchronization (ZLS) among two or more corti-
cal areas which do not share the same input is one of the
main enigmas in neuroscience [4, 5]. It has been argued
that nonlocal synchronization is a marker of binding ac-
tivities in different cortical areas into one perceptual entity
[5, 6, 7]. This prompted the hypothesis that synchroniza-
tion may hold key information about higher and complex
functionalities of the network. To investigate the synchro-
nization of complex neural circuits we studied the activity
modes of networks in which the properties of solitary neu-
rons, population dynamics, delays, connectivity and back-
ground noise mimic the inter-columnar connectivity of the
neocortex.

2. Neuronal circuit

We start with a description of the neuronal circuits and
define the properties of a neuronal cell, the structure of a
node in a network representing one cortical patch, and the
connection between nodes. Each neural cell was simulated
using the well known Hodgkin Huxley model [8, 9]. Each

node in the network was comprised of a balanced popu-
lation of 30 neurons, 80/20 percent of which were excita-
tory/inhibitory (Fig. 1a). The lawful reciprocal connec-
tions within each node were only between pairs of excita-
tory and inhibitory neurons and were selected at random
with probability pin. In terms of biological properties it
was assumed that distant cortico-cortical connections are
(almost) exclusively excitatory whereas local connections
are both excitatory and inhibitory [10]. In this framework,
cortical areas are connected reciprocally across the two
hemispheres and within a single hemisphere, where small
functional cortical units (patches) connect to other corti-
cal patches in a pseudo random manner. The number of
patches to which a single patch connects varies consider-
ably, where typically, it grows like the square root of the
number of cortical neurons [11] resulting for a mouse in 3
to 6, and most likely for humans roughly 150. Hence, we
investigated excitatory strongly connected oriented graphs;
i.e., if neurons belonging to node A project to neurons be-
longing to node B, then connections from node B to node
A are forbidden; however there is a legal path between
any pair of nodes. The connection between neurons be-
longing to different nodes was excitatory and was selected
with probability pout. In terms of biological properties,
distant cortico-cortical unidirectional connections were ex-
clusively excitatory whereas local connections within one
node of the network were both excitatory and inhibitory
[10].

The delay between a pair of neurons belonging to the
same node was taken from a uniform distribution in the
range [1.5,2.5] ms, whereas neurons belonging to differ-
ent nodes came from a uniform distribution in the range
[τ− 0.5, τ+ 0.5] ms where τ was the average time delay in-
cluding the internal dynamics of a neuron. Results are ex-
emplified below in simulations with pin=0.2, pout=0.8 and
τ = 20 ms, unless otherwise indicated. The robustness of
the results was tested under the influence of background
synaptic noise generated from the synaptic input of a bal-
anced random population of 1000 neurons. In the absence
of a stimulus, an isolated node as well as the entire net-
work has no consistent or periodic firing activity or chaotic
activity [9].

Figure 1a depicts a neuronal circuit consisting of four
nodes and two loops having total delays of 3τ and 4τ with
GCD(3,4)=1, where at time t=0 node A is stimulated for
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Figure 1: ZLS and clusters in small neural circuits. (a) Schematic of ZLS of an oriented circuit consisting of four
nodes, where node A is stimulated for 5 ms by an external current Iext = 4µA/cm2. Detailed structure of each node
is depicted for node B where filled-circles/empty-circles stand for excitatory/inhibitory neurons and arrows represent
reciprocal connections between excitatory and inhibitory neurons. (b) Raster diagram of the firing activity of neurons in
(a). (c) Schematic of an oriented circuit consisting of seven nodes which splits into 3-clusters represented by 3 colors. (d)
Raster diagram of the firing activity of neurons in (c). (e) Spike train for (a) with simplified node consisting of only one
neuron . (f) Spike train for (c) as for (e). (g) Mixing mechanism (see text) for (a) where steps are measured in units of τ
and synchronized nodes are composed of an identical set of colors. (h) Mixing mechanism for (c).

5 ms by an external current Iext = 4µA/cm2. The raster
diagram of the firing activity of the neurons in each node is
presented in Fig. 1b. Although the graph does not contain
reciprocal connections after a short transient, ∼ 200 ms,
the neuronal circuits reach ZLS among all nodes. Figure
1c depicts a neuronal circuit consisting of seven nodes and
two loops with total delays of 6τ and 3τ with GCD(6,3)=3,
where at time t=0, node B for instance is stimulated for
5 ms by an external current Iext = 4µA/cm2. The raster
diagram of the diluted firing activity of the neurons in each
one of the seven nodes is presented in Fig. 1d. Results
indicate that after a short transient of less than 200 ms, the
neuronal circuit splits into 3-clusters as labeled by three
different colors in Figs. 1c and 1d.

There are two sources for the low firing rate in the neu-
ronal circuits [13, 14]. The first source is the local in-
hibitory connections that hyperpolarized the membrane po-
tential resulting in a relatively diluted firing pattern in each
node. The second source is the emergence of m-clusters
leading to the periodic activity with a period of mτ of each
node rather than τ as in the case of ZLS. However, the
model described here is but a toy model compared to the
full biological reality [13, 14].

3. GCD-clusters and mixing mechanism

In the absence of inhibition and background noise, the
firing pattern of each neuron becomes regular and all neu-
rons in a node are synchronized; however, the phase among
nodes is unaltered. For the sake of clarity, below we present
results for neural circuits where each node was reduced to
one excitatory neuron with no background noise, although

similar results were obtained in simulations for structured
nodes and background noise. The results of this simplified
node characterized by a single neuron for the neural cir-
cuits in Figs. 1a and 1c are presented in Figs. 1e (ZLS)
and 1f (3-clusters), respectively. The interplay between the
number of clusters and the GCD of the loops that com-
pose a neuronal circuit can best be understood by the self-
consistent argument, mixing mechanism, that nodes with
identical color are in ZLS and must be driven by the same
set of ”colors”. The trivial solution is always one ”color”,
ZLS; however, the alternative solution consists of exactly
GCD ”colors”, GCD-clusters. An attempt to consistently
color nodes serially with a greater number of colors fails,
because nodes of the same color have different drives. In
the case of GCD > 1, GCD-clusters take over the ZLS
solution following the mixing mechanism [15]; the initial
condition is a distinct color for each node, time steps are
rescaled with τ and at each time step a node is colored by
the union of colors of its driven nodes. The colors of a node
at step t indicate the set of nodes/colors at t=0 which are
now mixed (integrated) by the node. The mixing mecha-
nism for the circuit in Fig. 1a is shown in Fig. 1g where af-
ter 10 steps all nodes are identical, and colored by 4 colors,
indicating a ZLS solution. Similarly the mixing mecha-
nism for the circuit in Fig. 1c indicates 3-clusters ((A,D,G),
(B,E), (C,F)) as depicted in Fig. 1h.

4. Nonlocal mechanism

A more complex circuit is presented in Fig. 2a consist-
ing of three directed loops with total delays of 6τ , 12τ and
18τ and 25 nodes. The GCD(6,12,18)=6 and 6-clusters
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(6-colors) were identified in simulations. Small changes
in topology can dramatically alter the number of clusters,
such that the addition/deletion of one connection can serve
as a remote switching mechanism in the circuit [17, 18].
Figures 2b, 2c and 2d show that an additional unidirec-
tional connection between two nodes induces a loop with
a total delay of 5τ , 4τ and 3τ , respectively. Hence the
GCD modifies and switches the 6-cluster solutions to ZLS,
2-clusters and 3-clusters, respectively. One might conclude
that in order to generate large loops the number of cortical
patches, nodes, needs to increase accordingly, nevertheless
Figure 2e indicates that an oriented graph consisting of 6
nodes with diluted connectivity generates loops of sizes
6nτ where n is an integer. Furthermore a shortcut in this
condensed representation, as shown by the dashed arrow in
Fig. 2e, changes the GCD in a way similar to the expanded
representation, Figs 2a-d.

Figure 2: Non-local mechanism for clustering of complex
and condensed circuits. (a) A circuit consisting of 25 sim-
plified nodes, loops with total delays of 6τ , 12τ and 18τ
(boundaries of areas A, A+B and C, respectively where τ
is a unit delay between two connected nodes), and a stim-
ulus to one node as in Fig. 1. Nodes split into 6-clusters
following the GCD(6,12,18)=6. (b) With an additional uni-
directional connection (dashed arrow) and a loop of 5τ , the
GCD(5,6,12,18)=1 and the circuit is in ZLS. (c) An addi-
tional loop of 4τ as in (b), where GCD(4,6,12,18)=2 and
the circuit is in 2 clusters. (d) An additional loop of 3τ as in
(b), where GCD(3,6,12,18)=3 and the circuit is in 3 clus-
ters. (e) Schematic condensed representation of 6n loops
where n is an integer, emerging in a ring of 6 nodes, each
one representing one cortical patch, and with diluted con-
nectivity where the in/out connectivity of each neuron is at
least 1. The gray dashed arrow depicts a similar effect as in
2b.

5. Complex external stimuli

A temporal stimulus to one node of the neural circuit
splits the firing pattern of nodes into GCD-clusters and in
addition the firing pattern cycle of a node is also equal to
the GCD. For a neural circuit with GCD=6 (Figs. 2a and
2e), the firing pattern cycle of a node is exemplified in the
first row of Fig. 3a together with its binary representation
and the degeneracy of this class of stimuli. Under cyclic
permutation symmetry in the 6-clusters arrangement, there
are 13 classes of simultaneous stimuli for nodes belonging
to one or more clusters as summarized by the first column
of Fig. 3a, and as expected, the sum of their degeneracy is
26 − 1 = 63. The firing pattern cycle and its binary repre-
sentation are given by the second and third columns of Fig.
3a.

Figure 3: Complex external stimuli and transients. (a) Un-
der permutation symmetry, the 63 different stimuli in the
6-cluster arrangement of the circuit in Fig. 2a are orga-
nized into 13 classes (first column), where the degeneracy
of each class is given in the last column. The firing pattern
cycle of a node together with its binary representation are
presented in the second and the third columns, indicating
that the number of clusters as well as the firing spike cycle
of a node can be any common divisor of the loops. (b) Four
node circuit which is in ZLS and the transients for the 15
different stimuli organized in a tree. (c) A square circuit
and its 15 different stimuli organized in 5 distinct cyclic
flows.

Results indicate that the period of the firing pattern can
differ from the GCD, for instance the stimulus period in the
4th ( 8th) row of Fig. 3a is 3 (2) and in fact the number of
clusters can be any common divisor of the loops composing
the circuit as a result of stimuli inducing such periodicity,
and an example is presented in Fig. 4.

The number of clusters as well as the spiking cycle of a
given node can identify a class of possible stimuli applied
to the circuits. Nevertheless, more detailed information
about the stimuli can be deduced rapidly from the transients
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Figure 4: Simulation results of two connected loops with
total delays of 6τ and 12τ consisting of 17 nodes. (a) A
drive to one node resulting in GCD(6,12)=6 clusters. (b) A
drive to every fourth node in the loop of 12 , represented
by (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0), results in GCD(4,6,12)=2
clusters. (c) The drive can be given to any set of nodes
with the same colors as in (b) and results in the same clus-
ters. (d) A drive to four consecutive nodes in the loop
of 12 represented by (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), which is
characterized by a periodicity of 12. Hence, it results in
GCD(6,12)=6 clusters.

[19] to synchronization. Fig. 3b shows all the transients to
ZLS from the 15 possible stimuli for the circuit in Fig. 1a,
whereas Fig. 3c presents the 5 possible cyclic flows for a
unidirectional square circuit. It is clear that the length and
even knowledge of a partial time ordering of firing nodes
in the transient quite clearly identify the stimulus, and the
synchronized mode mainly serves as an indicator of the end
of the transient.

Generalization of above homogeneous circuit results to
heterogeneous circuits where the latency of neurons is
taken into account is straightforward as discussed in [9].

6. Concluding remarks

The activity mode of the entire network cannot simply
be described as a ”Lego” of small connecting neural cir-
cuits with a given activity, since it is governed by a nonlocal
quantity, the GCD. These findings challenge the emergence
of significant topological motifs and the importance of their
role in the functionality of the entire network [20] as well
as the impact of statistical properties of complex neural cir-
cuits. Rather, they call for a reexamination of sources of
correlated activity in cortex where addition/deletion of a
connection or more realistically synaptic alternations that
can induce transition between decaying and sustained ac-
tivities can serve as a remote switching mechanism, and in-
dicate that learning induced changes in some connections

affects the functionality of the networks more than others.
The hypothesis that neural information processing might
take place in the transient is suggestive of a much shorter
time scale for the inference of a perceptual entity.

References

[1] E. Zohary, M. N. Shadlen, W. T. Newsome, Nature
370, 140 (1994).

[2] E. Vaadia et al., Nature 373, 515 (1995).

[3] M. N. Shadlen, W. T. Newsome, J. Neurosci. 18, 3870
(1998).

[4] M. Steriade, D. A. McCormick and T. J. Sejnowski,
Science 262, 679 (1993).

[5] C. M. Gray,P. Konig, A. K. Engel and W. Singer, Na-
ture 338, 334 (1989).

[6] R. Eckhorn et al., Biol Cybern 60, 121 (1988).

[7] W. Singer and C. M. Ann. Rev. Neurosci. 18, 555
(1995).

[8] A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500
(1952).

[9] I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, W.
Kinzel, M. Abeles and D. Cohen, Europhys. Lett.
(March 2011).

[10] M. Abeles, Corticonics. (Cambridge University
Press, 1991).

[11] V. Braitenberg, J. of Comput. Neurosci. 10, 71
(2001).

[12] I. Kanter, M. Zigzag, A. Englert, F. Geissler, W.
Kinzel, arXiv:1012.0990 (2010).

[13] S. Shinomoto et. al., PloS Comput. Biol. 5, e1000433
(2009).

[14] T. Shimokawa, S. Shinomoto, Neural. Comput. 21,
1931(2009).

[15] M. Zigzag, M. Butkovski, A. Englert, W. Kinzel, and
I. Kanter, Europhys. Lett. 85, 60005 (2009).

[16] A. Berman, R. J. Plemmons, Nonnegative matrices in
the mathematical science, (Academic Press, New York,
1979).

[17] A. M. Thomson and J. Deuchars, Trends Neurosci.
17, 119 (1994).

[18] M. V. Tsodyks and H. Markram, Proc Natl Acad Sci
USA 94, 719 (1997).

[19] S. Yantis et. al., Nature Neurosci.5, 995 ( 2002).

[20] R. Milo et al., Science 303, 1538 (2004).

- 430 -


	Navigation page
	Session at a Glance
	Technical Program

