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Abstract—In this paper, we consider a novel chaos con-
trol method based on the Stability Transformation Method
for the continuous-time chaotic systems. Previously, we
have proposed a stabilization method that can stabilize un-
known unstable periodic orbits embedded in chaotic attrac-
tors in continuous-time dynamical systems detected via the
approach of the Stability Transformation Method. How-
ever, the application range of this control method has been
restricted since the method requires discontinuity of state
variables. This paper presents a stabilization method of un-
known unstable periodic orbits without state-jump dynam-
ics by utilizing the Occasional Proportional Feedback tech-
nique. The stability of the control system is theoretically
analyzed. Some results are verified by laboratory measure-
ments.

1. Introduction

Chaos is an intrinsically complex phenomenon in deter-
ministic nonlinear dynamical systems. It is often treated
as a phenomenon to be suppressed in many engineering
systems. In general, the procedure to stabilize unstable
periodic orbits (UPOs) embedded in a chaotic attractor is
called controlling chaos. Since the 1990’s, the idea of sta-
bilizing UPOs embedded in chaotic attractor through only
small perturbations of system parameters introduced by
Ott, Grebogi and Yorke[1] (OGY) has attracted great inter-
est among physicists. Many researchers have applied OGY
method to both discrete and continuous time chaotic sys-
tems, and have reported interesting results. However, this
approach requires the knowledge of position of the desired
periodic orbits, so that it is not able to stabilize the periodic
orbits whose information of positions is unknown. In pre-
vious work[2], we have proposed a chaos control method
based on Stability Transformation Method (STM) to stabi-
lize unknown UPOs of a chaotic system. STM proposed
by Pingel at al[3] can detect the location of UPOs by con-
structing a transformed system which has the stable peri-
odic orbits with the same location of UPOs exhibited in the
orginal chaotic system. The control method realized the
transformed system as a real system. The control princi-
ple is to construct the transformed system which has the
stable periodic orbits at the same location of UPOs of the
target chaotic system. Then we used Instantaneous State

Setting (ISS) method[4] in order to realize the transformed
system for continuous-time dynamical system. However,
the proposed method used instantaneously change of sys-
tem state variables and makes them discontinuous. There-
fore it may not be applicable for mechanical engineering
systems. In other words, expanding scope of application
of our proposed approach by making the state variables
continuous has been expected. In this paper, we intro-
duce a novel chaos control method based on STM utilizing
Occasional Proportional Feedback (OPF) method to sta-
bilize the unknown UPOs of chaotic systems whose state
variables are continuous. We realize the controller to an
autonomous continuous time system, 3-dimensional (3-D)
hysteresis chaos generator, and present the stabilization of
its unknown UPOs. We also confirm the effectiveness of
the control system to the real system.

2. 3-dimensional hysteresis chaos generating system

2.1. 3-D hysteresis chaos generator

We consider an autonomous piecewise linear system
which can generate chaos characteristic, 3-D hysteresis
chaos generator, as our control target. The dynamics are
described as follows:[

ẋ
ẏ

]
=

[
0 1
−1 2δ

] [[
x
y

]
−

[
p
0

]
h(x)

]
, (1)

wherex andy are system state variables,“ ·”denotes the
differentiation by normalized timeτ , δ andp are 2 parame-
ters of system which controlling a damping and equilibrium
points, respectively.h(x) is normalized hysteresis which
switched from1 to −1 if x reaches the thresholdx = −1
and switched from−1 to1 if x reaches the thresholdx = 1.
For simplicity, we focus on the following parameters range:
0 < δ < 1, p > 0. In this range, Eq. (1) has the conju-
gate complex eigenvalueδ ± jω, whereω =

√
1 − δ2. We

can confirm that the chaotic system exhibits chaos and bi-
furcation phenomena within this parameters range. [4] The
piecewise solution of Eq. (1) is given by:[

x(τ) ∓ p
y(τ)

]
=

eδτ

ω

[
cos(ωτ + φ) sinωτ
− sinωτ cos(ωτ − φ)

]
×

[
x(0) ∓ p

y(0)

]
(2)

whereφ = tan−1(δ/ω).
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Figure 1: Behavior of 3-D Hysteresis Chaos Generator

To present the behavior of the system trajectory, we focus
on the following 2 half-planes in a 3-dimensional phase
space as shown in Fig. 1.

S+ ≡ {(x, y, h)|x ≥ −1, h = 1},
S− ≡ {(x, y, h)|x ≤ 1, h = −1}.

In order to derive a return map, we also define some objects
shown in Fig. 1:
1) Equilibrium point onS+: p+ = (p, 0, 1) ∈ S+,
2) Equilibrium point onS−: p− = (−p, 0,−1) ∈ S−,
3) Threshold onS+: Th− = {(x, y, h)|x = −1, h = 1},
4) Threshold onS−: Th+ = {(x, y, h)|x = 1, h = −1}.
Note that the vector field onS+ is symmetrical to that on
S−. We consider that the trajectory starts fromx(τ0) on
S+ at τ = τ0. It rotates around the equilibrium pointp+

and expands as shown in Fig. 1. When the trajectory hits
Th− at τa, h(x) is switched from1 to −1 and the state
jumps fromx(τa) onS+ to the same coordinates ofx(τa)
onS−. The point onS− isx(τ+

a ). Then the trajectory start-
ing fromx(τ+

a ) rotates divergently aroundp− and must hit
Th+ at τb. At this moment,h(x) is switched from−1 to 1
and the state jumps fromx(τb) on S− to the same coordi-
nates ofx(τb) on S+. The point onS− is x(τ+

b ). The tra-
jectory starting fromx(τ+

b ) rotates divergently aroundp+

similarly and it repeats such behavior. Here, the switching
time τ+

a andτ+
b are defined by:

τ+
a = lim

∆τ→0
(τa + ∆τ), τ+

b = lim
∆τ→0

(τb + ∆τ). (3)

2.2. Return map

Since the trajectory starting from any point ony = 0 will
definitely return toy = 0 within a finite time, we choose
J ≡ {(x, y, h)|y = 0} as the domain of our return map and
define it as follows:

F : J → J, R × B → R × B,
ξn+1 = (xn+1, hn+1)

= F (xn, hn) = (f(xn, hn), g(xn, hn)).
(4)

wherexn ∈ R denotes coordinate of statex on y = 0
when the trajectory hitsJ at n-th time andhn ∈ B ≡
{−1, 1} is the value ofh(x) at that moment.f(xn, hn) and
g(xn, hn) in Eq. (4) are described by:

f(xn, hn) =



f1(xn) for xn > xTh,
f2(xn) for [(−1 ≤ xn ≤ xTh)

and(hn = 1)],
f3(xn) for [(−xTh ≤ xn ≤ 1)

and(hn = −1)],
f4(xn) for xn < −xTh,

(5)

g(xn, hn) =


1 for {(1 ≤ xn ≤ xTh)
or [(−1 ≤ xn ≤ 1) ∪ (hn = 1)]},

−1 otherwise,

(6)

wherexTh = p +
1
ω

e−δπ/ω cos(−π + φ)(−1 − p).

f1, f2, f3, f4 in Eq. (5) are represented as follows:

f1(xn) = −p +
1
ω

eδτ2

[−1
ω

eδτ1 sinωτ1{(x − p) sinωτ2

+(−1 + p) cos(ωτ2 + φ)}
]
, (7)

where

τ2 =
1
ω

[
π + tan−1 −eδτ1 sinωτ1(x − p)

−1 + p + δ
ω eδτ1 sinωτ1(x − p)

]
,

f2(xn) = p +
eδπ/ω

ω
cos(π + φ)(x − p), (8)

f3(xn) = −p +
eδπ/ω

ω
cos(π + φ)(x + p), (9)

f4(xn) = p +
1
ω

eδτ4

[−1
ω

eδτ3 sin ωτ3{(x + p) sin ωτ4

+(1 − p) cos(ωτ4 + φ)}
]
, (10)

where

τ4 =
1
ω

[
π + tan−1 −eδτ3 sin ωτ3(x + p)

−1 − p +
δ

ω
eδτ3 sinωτ3(x + p)

]
.

τ1 in Eq. (7) andτ3 in Eq. (10) are given by solving the
following equations with Newton method.

eδτ1

ω
cos(ωτ1 + φ)(x − p) + 1 + p = 0,

eδτ3

ω
cos(ωτ3 + φ)(x + p) − 1 − p = 0.

(11)

Here, we present the chaotic attractor exhibiting in the hys-
teresis chaos generating system and its corresponding 6
times composition mapping as shown in Fig. 2.
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Figure 2: A chaotic attractor of system(δ = 0.05, p = 2):
(a)x − y phase space, (b) 6 times composition map

3. Chaos control method based on STM utilizing OPF

We propose a novel chaos control method based on STM
utilizing OPF procedure to stabilize unknown UPOs of
continuous-time chaotic systems. Block diagram of the
controlled system is presented as shown in Fig. 3 and its
dynamics are described as follows:[

ẋ
ẏ

]
=

[
0 1
−1 2δ

][[
x
y

]
−

[
p + ∆p

0

]
h(x)

]
for SW = on.

(12)
Operation of controller switchSW is described by

SW =


on for kατn ≤ t ≤ kατn +

π

ω
,

(α = 0, 1, 2...)
off otherwise,

(13)

wherek denotes periodic number of the target trajectory.

Figure 3: (a) Block diagram of controlled system, (b) Con-
trolled variable∆p

∆p is the controlled variable applied to the equilibrium
pointp whenSW is on.

∆p =
1

h(x)
KOPF (xn − vn+k), (14)

whereKOPF denotes the gain of controller utilizing OPF
method. System will turn in super stable condition if
KOPF satisfies the following equation.

KOPF =
V

V − 1
, (15)

whereV =
1
ω

eδ π
ω cos(π + φ).

vn+k in Eq. (14) is determined as follows:
vn+k = q(vn+k),
vn+k = (I − KSTM )ξn + KSTMvn,

(16)

whereKSTM ∈ R2 denotes the gain of controlled system
based on STM.vn = (vn, hn) andξn = (xn, hn) repre-
sent the internal state of the controller and the state variable
of system, respectively.vn is updated whenevery = 0 as
same as update ofξn. Linear transformationq is defined
by:

q : R2 → R, (v, h) 7→ v . (17)
Here, we explain about the trajectory behavior of controlled
system shown in Fig. 4. First, whenn = 0 we consider
that the trajectory hitsJ at τ = τ0 on the half-planeS+.
The trajectory starting from this intersection pointx(τ0)
moves as well as the dotted line in caseSW is off. When
SW is on, at the moment the trajectory hitsJ , the con-
troller’s internal state is set tov0. Thenv6 is found by
solving Eq. (16) withx0 andv0. We calculate∆p with
Eq. (14) from the obtainedv6. We consider the hypotheti-
cal trajectory starting fromv6 is represented by the dashed
line. Next, equilibrium point is shifted laterally by the con-
trolled variable∆p between the moment fromτ0 to τ1. In
the result, the trajectory starting fromx(τ0) is consistent
with the hypothetical trajectory indicated by the dashed
line which includingx(τ1) on. Thereafter, shifted equilib-
rium point returns to its original position and the trajectory
moves as well as behavior of 3-D hysteresis chaos gener-
ator as shown in Fig. 1. When it becomesn = kα, the
same control operation as above is repeated. We describe

Figure 4: Typical trajectory of controlled system

dynamics of controlled system by this operation as follows:
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{
ξn+k = F k[(I − KSTM )ξn + KSTMvn]
vn+k = (I − KSTM )ξn + KSTMvn

for n = kα,

(α = (0, 1, 2...)){
ξn+l = F l(ξn)
vn+l = vn

otherwise.
(0 < l < k)

(18)

We consider the case ofKSTM = 0, controlled system
is equivalent to the hysteresis chaos generator in section
2.1. In the case ofKSTM 6= 0, from the relation of
ξn = F k(vn), Eq. (18) can be abbreviated to the following
system.

vn+k = (I − KSTM )F k(ξn) + KSTMvn. (19)

Equation (19) is equivalent to transformed system. Regard-
less of the control gainKSTM , this transformed system
(19) has fixed point(s) with the coordinate the same as fixed
point(s) of the original chaos system. If we set control gain
KSTM appropriately, transformed system (19) will exhibit
a stable fixed point with the same position asξf . Our next
step is to stabilize the fixed pointξf of the Transformed
system (19) by suitable choices ofKSTM . First, we con-
sider the stability condition matrix of the controlled system
as follows:

Cts =

∣∣∣∣∣ ∂F k(vn)
∂vn

∣∣∣∣
vn=ξf

∣∣∣∣∣ =

∣∣∣∣∣ ∂vn+k

∂vn

∣∣∣∣
vn=ξf

∣∣∣∣∣ . (20)

Sinceξf is an unstable fixed point at least one of the eigen-
values ofCts at ξf must possess an absolute value greater
than 1. In order to stabilizeξf let us consider the stability
matrixMKstm which obey the following relation:

MKstm = (I − KSTM )DF k(ξf ) + KSTM . (21)

Then we adjust the control gainKSTM such that the eigen-
values of the stability matrixMKstm atξf must have abso-
lute values less than 1. We also estimate the derivation of
F k atξf as follows:

DF k(ξf ) ' F k+1(ξf ) − F k(ξf )
F k(ξf ) − ξf

. (22)

Especially, if control gainKSTM is satisfied with the fol-
lowing equation, system will turn in super stable condition.

KSTM =
−DF k(ξf )

1 − DF k(ξf )
. (23)

Thus, if we setKSTM appropriately satisfied with the
above stability condition, controlled system exhibits stable
periodic orbit(s) with the same position as the unstable pe-
riodic orbit(s) of hysteresis chaos generating system. Since
(18) does not include any information of the fixed pointξf ,
it is possible to stabilize unknown UPOs of chaotic sys-
tem if we can set control gain appropriately. Here, we ver-
ify the efficacy of the controlled system with our proposed
method by numerical simulation. We choose 6-period sta-
ble periodic orbits as our goal and setKSTM = 1.1. We
also confirm the stabilization of 3 kinds of different unsta-
ble periodic orbits depending on different initial values as
shown in Fig. 5.

Figure 5: Stable periodic orbits exhibited by the controlled
system(δ = 0.05, p = 2, k = 6,KSTM = 1.1)

4. Conclusion

In this paper, we considered a basic approach to gener-
alize techniques of controlling chaos. We proposed a novel
chaos control method based on the STM utilizing OPF
technique for the autonomous continuous-time chaotic sys-
tems, and described our approach for the case of stabilizing
fixed points of 6 times composition map. We also presented
the procedure to stabilize the unknown UPOs of a 3-D hys-
teresis chaos generator. Now we are trying to analyze the
stability region of the control gainKOPF andKSTM of
our controlled system.
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