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Abstract—In this paper, we consider a novel chaos conSetting (ISS) method[4] in order to realize the transformed
trol method based on the Stability Transformation Methodystem for continuous-time dynamical system. However,
for the continuous-time chaotic systems. Previously, wihe proposed method used instantaneously change of sys-
have proposed a stabilization method that can stabilize utem state variables and makes them discontinuous. There-
known unstable periodic orbits embedded in chaotic attradere it may not be applicable for mechanical engineering
tors in continuous-time dynamical systems detected via tteystems. In other words, expanding scope of application
approach of the Stability Transformation Method. How-of our proposed approach by making the state variables
ever, the application range of this control method has be@ontinuous has been expected. In this paper, we intro-
restricted since the method requires discontinuity of statuce a novel chaos control method based on STM utilizing
variables. This paper presents a stabilization method of u@ccasional Proportional Feedback (OPF) method to sta-
known unstable periodic orbits without state-jump dynambilize the unknown UPOs of chaotic systems whose state
ics by utilizing the Occasional Proportional Feedback techrariables are continuous. We realize the controller to an
nigue. The stability of the control system is theoreticallyautonomous continuous time system, 3-dimensional (3-D)
analyzed. Some results are verified by laboratory measutgysteresis chaos generator, and present the stabilization of
ments. its unknown UPOs. We also confirm the effectiveness of

the control system to the real system.

1. Introduction . . . .

2. 3-dimensional hysteresis chaos generating system
migizzgsnlsnellirr:g:rngswany complex phenomenon " detegl 3-D hysteresis chaos generator

ynamical systems. It is often treate

as a phenomenon to be suppressed in many engineeringVe consider an autonomous piecewise linear system
systems. In general, the procedure to stabilize unstabléhich can generate chaos characteristic, 3-D hysteresis
periodic orbits (UPOs) embedded in a chaotic attractor ishaos generator, as our control target. The dynamics are
called controlling chaos. Since the 1990’s, the idea of statescribed as follows:
bilizing UPOs embedded in chaotic attractor through only z 0 1 T Pl
small perturbations of system parameters introduced by L,] - [1 25} H:y:| - [0] (1:)] ’ @
Ott, Grebogi and Yorke[1] (OGY) has attracted great imerWhere « andy are system state variable$; " denotes the

estamong physicists. Many researchers have applied OGy¥e rentiation by normalized time, § andp are 2 parame-

method to both discrete a}nd con'tinuous time chaotic SYRrs of system which controlling a damping and equilibrium
tems, and have reported interesting results. However, tg%/

. " . points, respectivelyh(z) is normalized hysteresis which
approach requires the knowledge of position of the desir itched froml to —1 if = reaches the threshold — —1

periodic orbits, so that it is not able to stabilize the periodi%nd switched from-1 to 1 if = reaches the threshatd= 1

orbits whose information of positions is unknown. In prexq impicity. we focus on the following parameters range:
vious work[2], we have proposed a chaos control methog <5< 1, p>o0. Inthis range, Eq. (1) has the conju-

based on Stability Transformation Method (STM) to stabi-8ate complex eigenvalue+ jw, wherew — /1 — 62. We

lize unknown UPOs of a chaotic system. STM proposefl,, confirm that the chaotic system exhibits chaos and bi-

by Pingel at al[3] can detect the Ioc_ation of UPOs by COMrcation phenomena within this parameters range. [4] The
structing a transformed system which has the stable pe fecewise solution of Eq. (1) is given by

odic orbits with the same location of UPOs exhibited in th

orginal chaotic system. The control method realized the {x(T) jFp] eéT[COS(“{T +9) sinwr
transformed system as a real system. The control princi- y(7) w | —sinwr - cos(wr —¢)

ple is to construct the transformed system which has the % z(0) Fp )
stable periodic orbits at the same location of UPOs of the y(0)

target chaotic system. Then we used Instantaneous Stateere¢ = tan=1(§/w).
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F:J—J RxB — RxB,

§ni1 = ($n+1, hn+1) (4)
= F(xn, hn) = (f(2n, hn), 9(n, hn)).

wherez, € R denotes coordinate of stateony = 0
when the trajectory hitg/ at n-th time andh,, € B =
{—1,1} is the value of,(x) at that momentf(x,,, h,,) and
g(xn, hy) in Eq. (4) are described by:

fi(zn) for z, > xrp,
jb(xn)for[(fl <@y < zﬁh)
_ and(h,, = 1)],
> ) =4 fi(a,) for (o <o < )
S and(h, = —-1)],
S_ p ) - f4(-77n) for Ty < —TTh,
_____ ] 1 for {(1 <z, < .’L‘Th)
9(xp, hy) = or[(-1 <z, <1 U (h, =1)]}, (6)
Th, x(t}) —1 otherwise

1 5
. . . = Zeom/w — —1—
Figure 1: Behavior of 3-D Hysteresis Chaos Generator WN€€rrh =p + —e cos(—m + ¢)(~1 —p).

f1, f2, f3, faIn EQ. (5) are represented as follows:

To present the behavior of the system trajectory, we focus 1os. 11 5 . '
on the following 2 half-planes in a 3-dimensional phasef1(#n) = —p+ —¢"™ | —e" sinwn {(z - p)sinwn
space as shown in Fig. 1.

St ={(z,y,h)|x > —1,h =1}, +(—1+ p) cos(wTs + ¢)}}7 @
S_={(z,y, M)z <1, h=-1} where
. . . 0T1 o
In order to derive a return map, we also define some objects _ 1 [W 4 tan~! —e’T sinwr (z — p) } ,
shown in Fig. 1: w ~1+4+p+ 2edmsinwr (z — p)

1) Equilibrium pointonS,.: p4 = (p,0,1) € S,
2) Equilibrium pointonS_: p_ = (—p,0,—-1) € S_, folan) = p+
3) Threshold or6.y: Th_ = {(z,y,h)|x = —1,h = 1},

4) Threshold or6_: Thy = {(z,y,h)|x =1,h = —1}.

Note that the vector field 0§ is symmetrical to that on Fs(an) = —p+
S_. We consider that the trajectory starts framr,) on w

St attT = 7. It rotates around the equilibrium poipt. 1 1

and expands as shown in Fig. 1. When the trajectory hitgs(z,) = p + —e°™ [—em sinwrs{(z + p) sin wry
Th_ at7,, h(x) is switched froml to —1 and the state v v

jumps fromz(7,) on S, to the same coordinates of 7, ) +(1 — p) cos(wrs + (/5)}} . (10)
onS_. The pointonS_ isx (7). Then the trajectory start-

ing fromz(7;") rotates divergently arounsl and must hit where

Thy atry,. Atthis momenth(z) is switched from-1to1 . _ 1 [W + tan—!
and the state jumps from(7,) on S_ to the same coordi- w

nates ofr(7,) on S;. The point onS_ is z(r;"). The tra-
jectory starting frome(7;") rotates divergently arounyoly
similarly and it repeats such behavior. Here, the switchin

6671‘/(4}

cos(m + ¢)(z — p), )

6571'/01

cos(m + ¢)(x + p), 9)

—e%7 sin wrs(x + p)

3 .
-1-p+ ;e‘”ﬁﬂ sinwrs(z + p)

71 in Eq. (7) andrs in Eq. (10) are given by solving the
5)Ilowing equations with Newton method.

time 7~ andr,” are defined by: e (r1+ )& —p)+14p=0
COS(WT xr — =0,
f = lim (1, + A7), 7,” = lim (7, +A7).  (3) w ' P P
ATS0 ATS0 (11)
2.2. Return map %3

cos(wrs + @) (xr+p)—1—p=0.
Since the trajectory starting from any pointga= 0 will w

definitely return toy = 0 within a finite time, we choose gre we present the chaotic attractor exhibiting in the hys-
J ={(z,y,h)|y = 0} as the domain of our return map andieresis chaos generating system and its corresponding 6
define it as follows: times composition mapping as shown in Fig. 2.
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1 =
whereV = ;e‘si cos(m + ).

M/

|
Xnte [MT1T 7

Untk IN EQ. (14) is determined as follows:

! Un+k = Q(Un+k)a (16)

} Vntk = (I — Ksram)én + KsTmvn,

| whereK s, € R? denotes the gain of controlled system
-60 L 1 60 based on STMw,, = (v, h,,) and&,, = (x,, h,,) repre-
(a) (b) sent the internal state of the controller and the state variable
of system, respectivelw,, is updated whenever = 0 as

Figure 2: A chaotic attractor of systéth=0.05,p = 2):  Same as update @f,. Linear transformationy is defined
(a) z — y phase space, (b) 6 times composition map Y- ¢:R> — R, (v,h) —u. 17
Here, we explain about the trajectory behavior of controlled
3. Chaos control method based on STM utilizing OPF  system shown in Fig. 4. First, when= 0 we consider
that the trajectory hitg atT = 73 on the half-planes, .
We propose a novel chaos control method based on ST¥he trajectory starting from this intersection pointr)
Ut|I|Z|ng OPF procedure to Stabilize UnknoWn UPOs Otﬁnoves as We” as the dotted |ine in C&&W iS off. When
continuous-time chaotic systems. Block diagram of th&yy is on, at the moment the trajectory hifs the con-
controlled system is presented as shown in Fig. 3 and ifgller's internal state is set to,. Thenug is found by
dynamics are described as follows: solving Eq. (16) withz, andv,. We calculateAp with
. Eq. (14) from the obtained;. We consider the hypotheti-
{x] - { 0 1} Hx} _ {p T Ap] h(m)] for SW —=on. cal trajectory starting fromyg is represented by the dashed
gl =1 20 Ly 0 line. Next, equilibrium point is shifted laterally by the con-

. . . . (12) trolled variableAp between the moment from, to 1. In
Operation of controller switcli T is described by the result, the trajectory starting from(r) is consistent
T with the hypothetical trajectory indicated by the dashed
on forkar, <t < kor, + -, line which includingz (1) on. Thereafter, shifted equilib-
SW = (a=0,1,2...) (13)  rium point returns to its original position and the trajectory
off otherwise moves as well as behavior of 3-D hysteresis chaos gener-

ator as shown in Fig. 1. When it becomes= ka, the
wherek denotes periodic number of the target trajectory. same control operation as above is repeated. We describe

(b)

Figure 3: (a) Block diagram of controlled system, (b) Con-
trolled variableAp

Ap is the controlled variable applied to the equilibrium *(73)

-

pointp whenSW is on. /
1
Ap = @KOPF(% — Unik), (14) Th,

where Ko pr denotes the gain of controller utilizing OPF
method. System will turn in super stable condition if Figure 4: Typical trajectory of controlled system
Ko pr satisfies the following equation.
v dynamics of controlled system by this operation as follows:

Kopp = —— 1
OPF V*17 (5)
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Entk = FF[(I — Ksrar)én + Ksravy]
for n = ka,
{ Uik = (I — Ksrar)én + KsTamvn ne
(a=1(0,1,2...))
_ il
{ 5”” :5 (&) otherwise () Chaos attract
n+l — Un (0 < l < k) a aos attractor __

(18)
We consider the case df gy, = 0, controlled system
is equivalent to the hysteresis chaos generator in secti

2.1. In the case ofgry # 0, from the relation of
&, = F*(v,,), Eq. (18) can be abbreviated to the following

system.
Vnik = (I — Ksrm) F¥ (&) + Ksramvy. (19)
Equation (19) is equivalent to transformed system. Regar

less of the control gair g7y, this transformed system N N
(19) has fixed point(s) with the coordinate the same as fixe (€ Initial condition: xo = 3.5,y = 0,ho = 1

point(s) of the original chaos system. If we set control gai
Ksras appropriately, transformed system (19) will exhibit
a stable fixed point with the same positionggs Our next

(b) Initial condition: xo = 4.1,y = 0,hg =1

step is to stabilize the fixed poigt; of the Transformed
system (19) by suitable choices &fsr,,. First, we con-
sider the stability condition matrix of the controlled systernr
as follows:

(d) Initial condition: xy = —3.5,y¢ = 0, hg = —1

OF* (v,) 00,41
— (20)  Figure 5: Stable periodic orbits exhibited by the controlled

oy |y ¢ Ovy |y, —¢
. ) n=Ss ) n=es ~ system(d = 0.05,p =2,k =6, Kgrpr = 1.1)
Sinceg ¢ is an unstable fixed point at least one of the eigen-

values ofC,, at€; must possess an absolute value greatey ;
s o X - . Conclusion
than 1. In order to stabiliz€; let us consider the stability

matrix M.,,, Which obey the following relation: In this paper, we considered a basic approach to gener-
My,,, = (I — Ksrap)DF* (&) + Ksrar. (21)  alize techniques of controlling chaos. We proposed a novel
Then we adjust the control gaiiis7y, such that the eigen- chaos control method based on the STM utilizing OPF
values of the stability matrid/y_, —at¢; must have abso- technique for the autonomous continuous-time chaotic sys-
stm

lute values less than 1. We also estimate the derivation §mS. and described our approach for the case of stabilizing
F* at¢; as follows: fixed points of 6 times composition map. We also presented

pht ok the procedure to stabilize the unknown UPQOs of a 3-D hys-
DF’C(gf) ~ (&7) — F"(&f) (22) teresis chaos generator. Now we are trying to analyze the

Fr(&p) — & stability region of the control gaitkopr and K gz Of
Especially, if control gaink g7y, is satisfied with the fol- gur controlled system.

lowing equation, system will turn in super stable condition.

Cts =
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