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Abstract—We propose a forced chaos generator with a
CMOS variable active inductor circuit. The equivalent in-
ductance of the variable active inductor in the proposed cir-
cuit can be controlled by an external voltage. The oscilla-
tion frequency of the circuit can be tuned by applying an
external signal. We then realize the folding-and-stretching
mechanism of chaotic motion by applying a periodic ex-
ternal signal. The chaotic dynamics are confirmed through
SPICE simulations with TSMC 0.35 µm CMOS semicon-
ductor process parameters. Moreover, we present bifurca-
tion phenomena, which are generated when the amplitude
and the period of the external signal are changed as bifur-
cation parameters.

1. Introduction
Chaotic phenomena observed in electronic circuits have

been extensively investigated. It is well known that chaos,
torus, and frequency entrainment occur in non-autonomous
circuits for certain values of the amplitude and period of
the external signal [1]. In addition, autonomous chaotic
circuits such as the double scroll circuit [2],[3] and the
hysteresis chaotic circuit [4] have also been proposed. Re-
cently, researchers have attempted to apply chaos to real-
world problems such as chaotic communication, chaotic
encryption, and combinatorial optimization problems. For
these applications, IC implementation is necessary because
miniaturization, high-speed operation, and large-scale in-
tegration of the chaotic circuits are essential. Against
this background, several chaotic circuits have been imple-
mented as integrated circuits [5]-[7].

As one of these chaotic circuits, a three-dimensional au-
tonomous chaotic circuit, based on a change in the oscilla-
tion frequency, has been proposed (Fig. 1) [8]．This cir-
cuit consists of a linear negative conductance, a capaci-
tor C, two inductors L1 and L2, and a diode D. By re-
placing the diode D in the circuit with a current-controlled
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Figure 1: Three-dimensional autonomous chaotic circuit
proposed in Ref. [8].

switch, the sub-circuit consisting of L1, L2, and D can be
treated as a variable nonlinear inductor. The oscillation fre-
quency of the circuit is changed by the switching operation
of the diode. Therefore, this effect causes a stretching-and-
folding mechanism, which is the basic mechanism of the
chaos generation.

In this paper, we propose a forced chaos generator based
on the circuit in Fig. 1 with a CMOS variable active in-
ductor circuit. The equivalent inductance of the variable
active inductor in the proposed circuit can be controlled by
the external voltage. We change the oscillation frequency
of the circuit by applying a periodic external signal to the
variable active inductor. Based on the above principle, the
above-mentioned folding-and-stretching mechanism is re-
alized. We confirm the chaotic dynamics of the proposed
circuit through SPICE simulations with TSMC 0.35 µm
CMOS semiconductor process parameters. Moreover, we
present bifurcation phenomena, which are generated when
the amplitude and period of the external signal are changed
as bifurcation parameters.

2. Forced Chaos Generator with CMOS Variable Ac-
tive Inductor Circuit

Figure 2 shows the forced chaos generator with a CMOS
variable active inductor circuit. First, we focus on the
CMOS variable active inductor and omit C3 from the cir-
cuit in the figure.

We assume that C ≡ C1 = C2 and R ≡ R1 = R2.
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Figure 2: Forced chaos generator with CMOS variable ac-
tive inductor circuit.
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Table 1: Coefficients in Eqs. (2) and (3).
　 a0 　 gdsn + gdsp

　 a1 　 a2
0 + 2a0gmp − gmngmp + g2

mp + a0gmngmpR + g2
mngmpR − gmng3

mpR
　 a2 　 C2{1 + (a0 + gmp)R}[1 + R{a0 + gmp − gmn(gmn + gmp)R}]
　 a3 　 C(a0 + gmp)(a0 + gmp − gmngmpR)
　 a4 　 C3{1 + 2(a0 + gmp)R + (a0 − gmn + gmp)(a0 + gmn + gmp)R2 − gmn(a0 + gmp)(2gmn + gmp)R3}
　 b　 a0 + gmp +C2R{1 + (a0 + gmp)R}ω2

We also assume that each of the two NMOSFETs and two
PMOSFETs match perfectly, and operate on equal dc cur-
rents: that is, gmn ≡ gm1 = gm2, gmp ≡ gm3 = gm4,
gdsn ≡ gds1 = gds2, and gdsp ≡ gds3 = gds4. The input
admittance Yin of the CMOS variable active inductor is de-
rived as

Yin = G + jB, (1)

where

G = a0 +
C2Rω2(a1 + a2ω

2)
b2 +C2ω2 (2)

and

B =
a3ω + a4ω

3

b2 +C2ω2 . (3)

a0, a1, a2, a3, a4, and b are given in Table 1. When G < 0
and B < 0 in Eq. (1), the input admittance of the CMOS
variable active inductor consists of negative conductance
and inductive susceptance connected in parallel. In this
case, the equivalent inductance Leq of the circuit is ex-
pressed as

Leq = −
1
ωB
= − b2 +C2ω2

a3ω2 + a4ω4 . (4)

Figure 3(a) shows the admittance chart of the CMOS
variable active inductor circuit obtained from SPICE simu-
lations with TSMC 0.35 µm CMOS process parameters. As
shown in Fig. 3(a), the value of Leq can be controlled by the
external voltage Vbias. Table 2 lists the circuit parameters
used in the SPICE simulations.

In addition, a periodic solution can be generated by con-
necting C3 to the CMOS variable active inductor circuit in
parallel, because the CMOS variable active inductor circuit

Table 2: Circuit parameters.
　　　 Element　　　 　　　 Value　　　

W/L of M1,M2 7.2/0.6 µm
W/L of M3,M4 6.6/0.6 µm

R1,R2 5 kΩ
C1,C2 3 pF

C3 10 pF
VDD 1.65 V
VS S −1.65 V
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Figure 3: (a) Admittance chart of the CMOS variable ac-
tive inductor circuit. (b) Oscillation frequency of periodic
solutions as a function of Vbias.
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Figure 4: External periodic signal for Vbias.

has negative conductance in a certain frequency range. The
oscillation frequency fo of the periodic solution is almost
equal to the resonance frequency 1/(2π

√
LeqC3). Thus, we

can change the oscillation frequency of the periodic solu-
tion by tuning Vbias. As obtained from the SPICE simula-
tions, Fig. 3(b) shows the oscillation frequency of the peri-
odic solution as a function of Vbias.

On the basis of the above-mentioned principle, we
change the oscillation frequency of the circuit by apply-
ing a periodic external voltage, shown in Fig. 4 as Vbias. As
a result, the forced chaos generator based on the circuit in
Fig. 1 is realized.

3. SPICE Simulations
We observe v and i (Fig. 2) by varying the amplitude and

period of the external periodic signal as shown in Fig. 4.
We assume that TV+bias

= T/2 and TV−bias
= T/2. Figure 5

shows a typical chaotic attractor on the v − i plane with
T = 100 ns, V+bias = −0.11 V, and V−bias = −0.72 V. In
addition, in order to examine the properties of the orbits,
we define the Poincaré sections of Fig. 5 at certain phases
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Figure 5: Chaotic attractor on v−i plane obtained by SPICE
simulation (V+bias = −0.11 V and V−bias = −0.72 V).
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Figure 6: Poincaré sections of attractors in Fig. 5. Values
indicate phases of the section.

of the external periodic signal as shown in Fig. 6. From this
figure, we can confirm that the attractor in Fig. 5 is chaotic,
because a folding-and-stretching mechanism is observed.

Bifurcation phenomena are observed when the ampli-
tude and period of the external signal are swept as bifur-
cation parameters. In the following, we define the Poincaré
section at each rising edge of the external square waveform.

Figure 7 shows the observed attractors and their Poincaré
sections. The amplitude parameters of the external signal
are fixed at V+bias = −0.11 V and V−bias = −0.72 V. The
period T of the external signal is varied. Here, we define
a number of points on the Poincaré section as the period.
For example, we can see 5 points in Fig. 7(a.2); there-
fore, the period of the attractor in Fig. 7(a.1) is 5. Fig-
ure 8 shows a bifurcation diagram of the attractor on the
Poincaré section when the period T of the external signal
is swept. As T is increased, the period-5 orbit bifurcates
and a period-10 orbit is generated, as shown in Fig 7(b).
In Fig. 8, a period-doubling route to chaos can be seen for
72.5 < T < 75.5. Unfortunately, the limited calculation
precision of the SPICE simulations prevents solutions with
periods greater than 20 from being observed.

Figure 9 shows the bifurcation phenomena when V+bias
of the external signal is changed (Fig. 4). In the figure,
the horizontal axis and the vertical axis are V+bias and v of
the attractors on the Poincaré sections, respectively. The
period and lower voltage of the external signal are fixed at
T = 100 ns and V−bias = −0.72 V, respectively. As shown in
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Figure 7: Attractors and their Poincaré sections. (a) Period-
5 (T = 74.5 ns), (b) Period-10 (T = 74.9 ns), (c) Period-20
(T = 75.2 ns), and (d) Chaotic attractor (T = 75.4 ns).

Fig. 9, period-adding phenomena [9], [10] are observed.
To understand the properties of the complex attractors in

the region between periodic solutions, we examine the at-
tractors on the Poincaré sections at various phases of the
external signal. Between V+bias = −0.8 V and V+bias =

−0.3 V in Fig. 9, all of the attractors on the Poincaré sec-
tions asymptotically converge to closed curves. This con-
firms that the observed complex attractors in the range of
−0.8 V< V+bias <−0.3 V in Fig. 9 are quasi-periodic attrac-
tors. Moreover, we conclude that when V+bias > −0.2 V, the
observed complex attractors are chaotic because a folding-
and-stretching mechanism is observed. Therefore, the bi-
furcation phenomenon in Fig. 9 is the chaos via torus
breakdown [9]. The border between chaos and torus ex-
ists around V+bias = −0.3 V.

Furthermore, we consider the case where the duty ratio
of the periodic external signal TV+bias

/T is varied. Figure 10
shows the bifurcation diagram in which TV+bias

/T is swept as
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Figure 8: Bifurcation diagram when T is swept as bifurca-
tion parameter (V+bias = −0.11 V and V−bias = −0.72 V).
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Figure 9: Bifurcation diagram when V+bias is swept as bifur-
cation parameter (V−bias = −0.72 V and T = 100 ns).

the bifurcation parameter. The horizontal axis of the figure
is the duty ratio of the external signal in percent, and the
vertical axis is v of the attractors on the Poincaré sections.
Here, V+bias = −0.11 V, V−bias = −0.72 V, and T = 100 ns.
To understand the properties of the complex attractors in
Fig. 10, we examine the attractors on the Poincaré sections
at various phases of the external signal. As a result, we
observed the folding-and-stretching mechanism; thus, the
complex orbits in Fig. 10 are chaotic.

4. Conclusions
We have proposed a forced chaos generator with a

CMOS variable active inductor circuit. Chaos, a quasi-
periodic attractor, and a periodic attractor were observed in
SPICE simulations. Poincaré section analyses were used
to confirm the chaotic dynamics of the proposed circuit.
Moreover, we presented the bifurcation phenomena when
the amplitude and period of the external signal were swept
as bifurcation parameters. As a future task, we plan to de-
velop the proposed circuit for practical IC implementation.
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