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Abstract— Complex-valued Associative Memory
(CAM) can deal with multi-valued patterns. Rotor As-
sociative Memory (RAM) is an advanced model of the
CAM. In this paper, we propose Chaotic Rotor Associative
Memory (CRAM) which uses a chaotic neuron model.
It is known that the CAM stores not only given learning
patterns but also the rotated patterns. All of them appear
in the recall process of the Chaotic CAM (CCAM). Our
proposed model, the CRAM, can remove the rotated pat-
terns. In addition, we found that most of the superimposed
patterns vanished by computer simulations.

1. Introduction

Recently, Complex-valued Associative Memory(CAM)
has been drawn attentions because the model can deal with
multi-valued patterns like grayscale images[1][2].

When the complex-valued neurons take K states, it is
known that the CAM stores K − 1 spurious memories
which are called rotated patterns, for a learning pattern.
This phenomenon is one of the CAM’s problems and cor-
responds to reversed patterns in the Hopfield Associa-
tive Memory(HAM). Nakata et al. proposed the Chaotic
Complex-valued Associative Memory(CCAM)[6] and in-
troduced chaos[3] to the CAM. By using chaotic neuron,
the network can get out of stable states and search all learn-
ing patterns. The computer simulation shows that many ro-
tated patterns and superimposed patterns appear in the as-
sociation process. We regard the patterns as objectionable
ones because they are different from the original learning
patterns.

The Rotor neuron[7][8][9] is a model whose states are
high-dimensional unit vectors. Especially, we are inter-
ested in the 2-dimensional rotor neuron related to the
complex-valued neuron.

Rotor Associative Memory (RAM) is an associative
memory model which the CAM is naturally extended to.
The model does not store rotated patterns. Nakamura et al.
showed that the capacity of the RAM is larger than that of
the CAM[9].

In this paper, we proposed the Chaotic Rotor Associative
Memory(CRAM) whose neurons are chaotic models for
confirming effectiveness of the RAM. We can expect that
the CRAM recalls less spurious memories than the CCAM
does in their association process.

In computer simulation using grayscale patterns, we
confirmed that the CRAM associated no rotated patterns
and few superimposed patterns.

2. Complex-valued Associative Memory

2.1. Complex-valued neuron

At first, we define the complex-valued neuron whose
input and state are complex number. K equally-divided
points ck(k = 0, 1, . . . ,K − 1) of the unit circle on complex
plane are defined as Eq.(1).

ck = exp(2kθK
√
−1)(k = 0, 1, . . . ,K − 1) (1)

θK =
π

K
(2)

State of the neuron takes one of the set {ck}. When we
define the input, the output to a complex-valued neuron,
the output function as f (·) and the neuron state as S , f (·)
and z, updating is given by the following equation

z = f (S ) (3)
f (S ) = argmax

ck

Re(ckS ). (4)

2.2. Complex-valued Associative Memory

Next, we define the CAM which is an associative mem-
ory with complex-valued neuron.

The connection weights of CAM are complex-valued
matrix. We denote the weight from the ith neuron to the
jth neuron as w ji, and then it must satisfy the relation

w ji = wi j. (5)

Let N and P be the number of neurons and learn-
ing patterns. Denote the pth learning pattern as a(p) =

(a(p)
1 , a

(p)
2 , . . . , a

(p)
N )(p = 1, 2, . . . , P). Then, w ji is defined

as

w ji =


P∑

p=1
a(p)

j a(p)
i (i , j)

0 (i = j).
(6)

We call this learning rule complex-valued hebb rule. It
clearly meets Eq.(5).

The CAM can be regarded as the RAM as described in
Sec.3.3.
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Figure 1: Learning patterns 1.

Figure 2: Rotated patterns.

2.3. Rotated patterns in CAM

When the CAM stores a pattern a, it also stores the pat-
terns ck a(k = 1, 2, . . . ,K − 1). The pattern ck a is gained by
rotating each neuron of the pattern a by 2kθk. The pattern
c0a is the learning pattern and in the case k , 0 the patterns
ck a is called the rotated patterns.

Suppose that the CAM stores three patterns of Fig.1.
Each dot takes three states, white, gray, and black, and
shows the state of a neuron. In this case, complex-valued
neuron with K = 3 is used and the states c0, c1 and c2 are
assigned to white, gray and black, respectively.

The CAM will store nine patterns in Fig.2. The patterns
A0, B0 and C0 are learning patterns, the patterns A1, B1
and C1 are patterns rotated by 2θK and the patterns A2, B2
and C2 are patterns rotated by 4θK .

3. Rotor Associative Memory

3.1. Rotor neuron

At first, we define the rotor neuron whose input, out-
put and state are 2-dimensional vectors. K equally-divided

points hk(k = 0, 1, . . . ,K−1) of the unit circle on x-y plane
are defined as Eq.(7).

hk =

(
cos 2kθK
sin 2kθK

)
(7)

The state of neuron takes one of the set {hk} and is ex-
pressed as

z =
(

x
y

)
. (8)

We define the input to a rotor neuron, the output function
and the neuron state as S = t(x, y), g(·) and z , where t(x, y)
means transposed (x, y). Updating is given by the following
equation

z = g(S) (9)
g(S) = argmax

hk

thkS. (10)

The complex-valued neurons behave as rotor neurons when
complex numbers are regarded as 2-dimentional vectors.

3.2. Rotor Associative Memory

Next, we define the RAM which is an associative mem-
ory with rotor neurons.

The connection weights of RAM is 2-by-2 matrix. We
denote the weight from the ith neuron to the jth neuron as
W ji, and then it must satisfy the relation

W ji =
tWi j. (11)

Denote the pth learning pattern as A(p) =

(a(p)
1 , a

(p)
2 , . . . , a

(p)
N )(p = 1, 2, . . . , P). Then, W ji is

defined as

W ji =


P∑

p=1
a(p)

j
ta(p)

i (i , j)

O (i = j).
(12)

We call this learning rule rotor hebb rule. It clearly meets
Eq.(11).

3.3. Relationship with Complex-valued Associative
Memory

We denote the state of the ith complex-valued neuron as
zi = xi + yi

√
−1. And we denote the weight from the ith

neuron to the jth neuron as

w ji = u ji + v ji
√
−1. (13)

Then the following equation holds.

w jizi = (u jixi − v jiyi) + (v jixi + u jiyi)
√
−1

(14)

If we denote

W ji =

(
u ji −v ji

v ji u ji

)
(15)
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zi =

(
xi

yi

)
, (16)

then we can regard the CAM as the special case of RAM. In
fact, W ji satisfies W ji =

tWi j from u ji = ui j and v ji = −vi j.
However learning uses the complex-valued hebb rule not
the rotor hebb rule. The RAM does not store rotated pat-
terns by the rotor hebb rule, but stores the reversed patterns
in the case that K is even.

3.4. Chaotic Rotor Associative Memory

We consider our proposed model CRAM. The network
can get out of stable states and search all learning patterns
by chaotic behavior. We construct the CRAM based on
the Sato-Nagumo model[3]. The dynamics of chaotic rotor
neurons are defined as

z(t + 1) = f

S(t + 1) − α
t∑

d=0

kd z(t − d)

 . (17)

The terms z(t) and S(t) are the neuron output and the neu-
ron input at time t. The coefficients α and k are the scaling
factor and damping factor. The term

−α
t∑

d=0

kd z(t − d) (18)

shows that the longer a stable state continues, the stronger
the current state is moved toward the opposite direction.
The CRAM can dynamically recall the stored patterns by
this behavior.

3.5. Reason of memorizing no rotated patterns

The state of the ith neuron rotated by 2kθK is denoted as
R(k)z(p)

i , where R(k) is defined as follows:

R(k) =
(

cos 2kθK − sin 2kθK
sin 2kθK cos 2kθK

)
. (19)

When a pattern R(k)A(p) is given to the RAM, the input
S j to the jth neuron is defined as follows:

S j =

N∑
i=1

W jiR(k)a(p)
i (20)

=

N∑
i=1
i, j

a(p)
j

ta(p)
i R(k)a(p)

i

+

N∑
i=1
i, j

P∑
q=1

q,p

a(q)
j

ta(q)
i R(k)a(p)

i (21)

= (N − 1) cos 2kθK a(p)
j

+

N∑
i=1
i, j

P∑
q=1

q,p

a(q)
j

ta(q)
i R(k)a(p)

i . (22)

The first term of Eq.(22) move the state toward A(p) in case
cos 2kθk > 0 and −A(p) in case cos 2kθk < 0. In addi-
tion, the larger | cos 2kθk | is, the stronger the RAM recalls
the learning pattern A(p). Thus the RAM does not become
stable because the model recalls ±A(p) when the rotated
pattern is given to it. The second term is the noisy term.

4. Computer simulation

We experienced computer simulations for checking the
behavior and confirming the effectiveness. The CCAM was
regarded as a special case of CRAM. In this simulation,
we regard continuously appearing patterns for more than 2
times as recalled patterns.

4.1. Chaotic Complex-valued Associative Memory

We confirmed the behavior of CCAM by computer sim-
ulation. The learning patterns were Fig.1. The parameters
were N = 400, k = 0.98, α = 17. Figure 3 shows the
association result.

The initial state was set as clover. The followings are the
times when the learning patterns were recalled.

clover 0 ∼ 17, 125 ∼ 130
umbrella 19 ∼ 31, 141 ∼ 154
panda 158 ∼ 171

In addition, the followings were recalled rotated patterns
and the time.

2θK rotated clover(A1) 65 ∼ 79
4θK rotated clover(A2) 94 ∼ 112
2θK rotated umbrella(B1) 46 ∼ 59
4θK rotated umbrella(B2) 114 ∼ 117
2θK rotated panda(C1) 202 ∼ 222
4θK rotated panda(C2) 180 ∼ 192

Furthermore, the superimposed patterns were recalled at
t = 35 ∼ 43, 62 ∼ 63, 133 ∼ 138, 174 ∼ 175, 198 ∼ 199 .

From the results, it’s confirmed that all learning patterns
were recalled but all rotated patterns and many superim-
posed patterns were also recalled.

4.2. Chaotic Rotor Associative Memory

We confirmed the behavior of CRAM by computer simu-
lation. The learning patterns were in Fig.1. The parameters
were N = 400, k = 0.97, α = 14. And Fig.4 shows the
association result.

The initial state was set as clover. In addition, the follow-
ings are the times when the learning patterns were recalled.

clover 0 ∼ 27, 119 ∼ 122, 159 ∼ 181
umbrella 29 ∼ 67, 183 ∼ 219
panda 69 ∼ 117

From the results, it’s confirmed that all learning patterns
were recalled and the rotated and the superimposed patterns
were not recalled.
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Figure 3: An association result of CCAM(N = 400, k =
0.98, α = 17).

5. Conclusion

In this paper, we proposed the CRAM which is RAM
using chaotic neurons. We got the following results about
our proposed model.

The CCAM cannot avoid recalling the rotated patterns.
The CCAM recalls not only learning patterns but also ro-
tated and superimposed patterns. However, the proposed
CRAM can avoid them. In our experiment of the CRAM,
rotated and superimposed patterns were not recalled.

When K is even, the CRAM recalls reversed patterns.
However we can avoid them by adding one dummy state to
the rotor neurons.

In this paper, we used grayscale patterns to visualize
the chaotic behavior. To process image data, our simple
method is not appropriate and we should take other ap-
proaches such as Nakata et al.[10].
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