
Efficiency Analysis of Signal Response in Coupled Inferior Olive Neurons
with Velarde-Llinás model

Sou Nobukawa†, Haruhiko Nishimura † and Naofumi Katada †

†Graduate School of Applied Informatics, University of Hyogo
7-1-28, Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047 Japan

Email: ab10y406@ai.u-hyogo.ac.jp, haru@ai.u-hyogo.ac.jp, nkatada@hyogo-c.ed.jp

Abstract—Schweighofer et al. have demonstrated in
computer simulation for their Hodgkin-Huxley(HH) type
compartmental model that chaotic irregular firing can be
produced in the inferior olive(IO) network, and rich error
signals for efficient cerebellar learning may be allowed by
this chaotic effect. In this paper, we focus on the Velarde-
Llinás IO neuron model which is consistent with experi-
mental data in all main features of IO neuron membrane
potential dynamics and is much simpler than HH model.
We investigate the signal response of IO assembly in both
cases of chaotic resonance and stochastic resonance under
the condition for sustaining IO neuron properties.

1. Introduction

The cerebellum is the system of motor control and its
function is acquired by cerebellar learning for adapting the
change of outside environments. In the cerebellar learn-
ing process, the inferior olive (IO) cells transmit error sig-
nals to the Purkinje cells through the climbing fibers. The
synaptic weights between the parallel fibers and the Purk-
inje cells are adjusted by long term depression (LTD) due
to input of the error signals [1, 2, 3]. Each error signal must
carry a sufficient amount of information for the cerebellar
learning for efficient motor control, but then the firing rate
of IO neuron is known to be very low (< 1 [Hz]). It has
been recognised that this low firing rate apparently contra-
dicts the error signal with high temporal resolution.

Schweighofer et al. constructed a IO neuron model
which is Hodgkin-Huxley (HH) type compartment system
composed of a soma and a dendrite[4]. Their simulation
study showed that chaotic irregular firings produced in the
network of this IO neuron model can transmit rich error
signal with low firing rate[5]. This phenomenon is not
the conventional stochastic resonance (SR)[6] by noise, but
chaotic resonance (CR)[7, 8] enhancing signal responses
by chaos. There is also experimental evidence to support
this firing [9, 10].

By the way, Llinás et al. [11] has proposed a simpler
model than HH type one, which is focused on the mem-
brane potential behavior and the dynamics (We call this
model Velarde-Llinás model from now on). The charac-
teristics of signal responses in CR and SR of this model
have not been studied. In this paper, we examine the re-

sponse to a periodic signal in the coupled Velarde-Llinás
IO neuron assembly and clarify its efficiency in CR and SR
under the conditions of IO neuron’s low firing rate and the
asynchronous firing among IO neurons.

2. Model and Methods

2.1. Velarde-Llinás Inferior Olive Neuron Model and
Its Interaction

Velarde-Llinás IO neuron model is a system composed
of Van der Pol (VP) sub-system, high threshold FitzHugh-
Nagumo(FNI) sub-system and low threshold FitzHugh-
Nagumo(FNII) sub-system to reproduce the membrane po-
tential behavior which is observed experimentally such as
sub-threshold oscillations and spike generation at two dif-
ferent thresholds[12]. Figure 1 shows that each sub-system
is coupled by parameters α, β and h, when the coupling
strength between VP and FNI is set to 1 (normalized). This
model is described as follows:

x′ = y, y′ = (γ(1 + αu) − x2)y − ω2(1 + βu)x, (1)

εw′ = g(w) − z − x, z′ = 0.5(w − I2)(w2 + 0.1), (2)
εu′ = f (u) − v + hw,

v′ = 0.05(u− I1)(u2 + 0.5), (3)

where (x, y), (w, z), (u, v) are variables of VP , FNI and FNII
respectively. Here, the functions of f and g which deter-
mine the characteristic of threshold in FN sub-systems are
given by

f (u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1.5u (u < a)
0.2u − 1.7a (a < u < 4)
−1.6u − 1.7a + 7.2 (u > 4)

, (4)

g(w) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2w (w < b)
3w − 5b (b < w < 1)
−5w − 5b + 8 (w > 1)

, (5)

where a and b determine the high threshold and the low
threshold respectively.

In our simulations we adopt two types of assembly simi-
lar to ones used by Schweighofer et al.[5] as shown in Fig.
2. The type of (a) is the chain assembly of 10 neurons in
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Figure 1: Constitution of Velarde-Llinás IO neuron
model. VP: Van der Pol sub-system, FN I: Low thresh-
old FitzHugh-Nagumo sub-system, FN II: High threshold
FitzHugh-Nagumo sub-system.

(a) Chain type (b) Lattice type
Figure 2: Configuration of IO neuron assembly.

which each neuron couples its two nearest neighbors. The
type of (b) is the lattice assembly of 3×3 neurons in which
each neuron couples its four nearest neighbors. Here each
neuron couples through FNII sub-systems with a gap junc-
tion described as the difference among membrane poten-
tials of coupled neurons. In the chain assembly the equa-
tion for u′ in Eq. (3) is replaced by

εu′i = f (ui) − vi + hwi + J(ui+1 + ui−1 − 2ui), (6)

where ui represents the membrane potential of the i-th neu-
ron (i = 1, 2, · · ·10) and J is the coupling strength of the
gap junctions.

In the lattice assembly the equation for u′ becomes

εu′i = f (ui) − vi + hwi + J(u j + uk + ul + um − 4ui),
(7)

where ui represents the membrane potential of the i-th neu-
ron (i = 1, 2, · · ·9) and u j, uk, ul and um are the membrane
potentials of four nearest neighbors. Here the periodic
boundary condition is applied to these assemblies.

To evaluate the signal response of Velarde-Llinás IO
neuron assembly, we consider a weak periodic signal
S (t) = A sin 2π f0t and a gaussian white noise Dξ(t)
(< ξ(t) >= 0, < ξ(t), ξ(t′) >= δtt′) for Eqs. (6) and (7) as
follows:

εu′i = f (ui) − vi + hwi

+ J(ui−1 + ui+1 − 2ui) + S (t) + Dξ(t), (8)
εu′i = f (ui) − vi + hwi

+ J(u j + uk + ul + um − 4ui) + S (t) + Dξ(t).
(9)

In the case of CR, noise is absent (D = 0), and in the case
of SR noise is applied (D � 0).

2.2. Evaluation Indices

To quantify the signal response, we use the following
four indices. The mutual correlation C(τ) between the cy-
cle histogram F(t̃) of the neuron spikes and the signal S (t̃)
is given by

C(τ) =
CS F (τ)√
CS S CFF

, (10)

CS F (τ)
=< (S (t̃ + τ)− < S (t̃) >)(F(t̃)− < F(t̃) >) > . (11)

F(t̃) is a histogram of firing counts at tk mod (T0) (k =
1, 2, · · · ) against the signal S (t̃) with a period T0(= 1/ f0),
0 ≤ t̃ ≤ T0. For the time delay factor τ, we check
maxτC(τ), i.e., the largest C(τ) between 0 ≤ τ ≤ T0.

As an index of synchronization of spikes in the assem-
bly, the coherence measure[13] is utilized. The coherence
between two neurons i and j is measured by the following
equation:

Ki j =

∑m
l=1 X(l)Y(l)√∑m

l=1 X(l)
∑m

l=1 Y(l)
. (12)

X(l) (l = 1, 2 · · · ,m (T/m = Δt)) is the spike train of the i-
th neuron during a long term interval T and given by 0 or 1.
Here, if the i-th neuron fires within the l-th time bin, X(l) =
1 otherwise X(l) = 0. Y(l) for the j-th neuron is given in
the same way. In the simulation, we take T = 100T0 and
Δt = 10. The population coherence of the whole assembly
is obtained by the average of Ki j over all pairs of neurons:

K =
2

N(N − 1)

N∑

i=1

∑

j<i

Ki j, (13)

where N is the number of neurons in the assembly.
To evaluate the physiological validity of the firing rate,

we introduce the firing frequency to sub-threshold oscilla-
tion frequency ratio (FS R). Because the firing frequency of
IO neuron is normally around or lower than 1 [Hz] and the
sub-threshold oscillation is about 10 [Hz], FS R becomes
smaller than 0.1[14]. Even if IO neuron spikes at every
sub-threshold oscillation, FS R does not over the limit of
1.0.

We also use the maximum Lyapunov exponent λ1 to
evaluate the chaos in the system.

Simulation parameters ε, γ, ω2, I1, I2, α, β, a, b and f0 are
kept to ε = 0.01, γ = 0.21, ω2 = 0.63, I1 = 0.9, I2 =

−0.7, α = 0.95, β = 0.9, a = 1.8, b = 0.5 and f0 = 10−2

throughout our simulations.

3. Results and Discussion

3.1. Chaotic Resonance

This section concerns the deterministic response of the
system in the case of noise-free (D = 0). The parameter h
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(a) J = 10−5
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(b) J = 4 × 10−4

Figure 3: Time series of membrane potential u1(t) (left) and
corresponding cycle histogram F(t̃) (right) under the sinu-
soidal input signal S (t̃) (dotted line). (a) for J = 10−5, (b)
for J = 4×10−4 in chain and lattice types. (h = −3.108, α =
0.95, β = 0.9, I1 = 0.9, I2 = −0.7, fs = 0.01, A = 10−3).

is taken as −3.108 where the membrane potential ui spikes
periodically when the IO neurons are uncoupled (J = 0).
Figure 3 shows the time series of u1(t) which is the first
neuron of the coupled assembly and the corresponding cy-
cle histogram F(t̃) of firing counts under the condition of a
weak signal strength (A = 10−3). In the case (a) J = 10−5,
the neurons still fire periodically and the cycle histogram
F(t̃) does not respond to the signal S (t̃) in both chain and
lattice types. However, by increasing coupling strength J
to appropriate one, the neurons become to fire aperiodi-
cally and the cycle histogram F(t̃) fits to the signal S (t̃)
with some time delay τ as shown in (b) J = 4 × 10−4. Be-
yond the appropriate region of J, the assembly loses the
signal response.

Let us examine the J dependence of the evaluation in-
dices introduced in 2.2 for the above data. Figure 4 in-
dicates J dependence of maxτC(τ), K, FS R and λ1. The
maxτC(τ) peaks near 0.9 at around J = 4×10−4. In this re-
gion, the firing rate is low (FS R ≈ 0.1), the neurons in the
assembly fire asynchronously (K ≈ 0.2) and the assembly
has a chaotic state (λ1 > 0).

From these results, It is found that the appropriate cou-
pling strength J leads the assembly to the asynchronous
chaotic firing state and then the response to the signal S (t)
is enhanced owing to this activity. This signal response can
be interpreted as CR.
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Figure 4: Dependence of evaluation indices on coupling
strength J in CR case. (h = −3.108, α = 0.95, β = 0.9, I1 =

0.9, I2 = −0.7, fs = 0.01, A = 10−3).

3.2. Stochastic Resonance

We also examine the stochastic response of the system
with noise (D � 0). The parameter h is taken as −1.3 where
the membrane potential ui(t) cannot spike and takes sub-
threshold periodic oscillation when IO neurons are noise-
free (D = 0) and uncoupled (J = 0). Then the signal
strength A of S (t) is set to 0.1 that is a sub-threshold value
keeping a non-firing state but much larger than 10−3 in CR
case. Figure 5 shows the D dependence of maxτC(τ), K
and FS R in the cases of J = 10−5, 10−3 and 10−1 in the
chain and lattice type assemblies. Indeed maxτC(τ) peaks
at D ≈ 0.1 but the firing rate is too high (FS R ≈ 1.0)
and the neurons fire almost synchronously (K ≈ 0.8) in
both chain and lattice types. This indicates that the conven-
tional SR can occur in the situation inappropriate for the
physiological observation in the cerebellar learning. We
could manage to tune D to the conditions (when D ≈ 0.06,
maxτC(τ) ≈ 0.8, FS R ≈ 0.02 and K ≈ 0.2). However,
u1’s behavior of the sub-threshold oscillation at D = 0.06
is much noisy compared to the physiological observation
as shown in Fig. 6 (a). By decreasing D to around 0.02,
the sub-threshold oscillation can be sustained as shown in
Fig. 6 (b), but then the value of 0.02 is too weak for the
assembly to respond to the signal.

4. Conclusion

In this paper, we have examined the efficiency of CR and
SR as the signal response in the coupled Velarde-Llinás IO
neuron assembly taking into account the conditions of IO
neuron’s low firing rate and the asynchronous firing among
IO neurons which are well known in the cerebellar learning
process. From the results, CR is found to have the high ef-
ficiency and be consistent with above conditions. On the
contrary, SR is confirmed to be obliged to lose the effi-
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Figure 5: Dependence of evaluation indices on noise
strength D in SR case. (h = −1.3, α = 0.95, β = 0.9, I1 =

0.9, I2 = −0.7, A = 0.1, fs = 10−2).

ciency in the signal response on account of noise restric-
tion. Similar results are also obtained in large scale IO neu-
ron assemblies up to 104 neurons. It is concluded that CR
can play a role of the signal response mechanism in the real
IO neuron assembly but SR cannot. A further direction of
this study will be to evaluate the effect a weak background
noise allowed for the actual IO on the signal response in
CR.
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