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Abstract—The progressive miniaturization of electron-

ics components makes today feasible to exploit the nano–

scale level. At this scale, phenomena peculiar of the quan-

tum world arise, which can be exploited to realize inno-

vative and potentially breakthrough devices. In this paper,

the dynamic behavior of one such device, the Casimir non-

linear oscillator is analyzed. It is shown that, due to the

nonlinear nature of the Casimir force, the oscillator can ex-

hibit Smale horseshoes, and the mechanism leading to their

birth is revealed.

1. Introduction

The progressive reduction in size of electronic devices,

that in about 50 years has covered the interval from cen-

timeters to microns, is now undergoing a further dramatic

descent, from micro to nano–scale. At this scale, the laws

of physics are quantum mechanical in nature, and new

amazing phenomena, which are unexpected from a clas-

sical perspective, emerge.

An important prediction of quantum electrodynamics

(QED) is the existence of irreducible fluctuations of the

electromagnetic field even in vacuum. These fluctuations

are responsible of van der Waals forces between atoms,

and of Casimir forces, e.g. interactions between electri-

cally neutral and highly conductive metals [1].

The boundary conditions imposed on the electromag-

netic fields by the presence of metallic surfaces lead to

a spatial redistribution of the mode density with respect

to free space, creating a spatial gradient of the zero-point

energy density and hence a net force between the met-

als [2]. Apart from its intrinsic relevance from the point

of view of theoretical physics, the Casimir effect has re-

cently attracted considerable attention for its possible en-

gineer applications. Because boundary conditions can be

tailored, this raises the interesting possibility of designing

QED forces for specific applications, exploiting the fasci-

nating idea to use the vacuum1 as a device itself. In this

optic, nano–electrometers, actuators, resonators and non-

linear oscillators have been realized and are under investi-

gation [3, 4, 5, 6, 7].

The Casimir forces are inherently mesoscopic, since they

can acquire significant values when the separation between

1Actually the zero-point energy

the metallic surfaces is reduced to less than 100 nm, and

nonlinear in nature. On the one hand, the mesoscopic na-

ture allows a classical description of the dynamic behavior

of the aforementioned devices. On the other hand, the non-

linear nature suggests the possible emergence of complex

nonlinear behaviors. While there is vast experimental liter-

ature about hysteretic response and bistability of nonlinear

oscillators in quantum optics, solid-state physics, mechan-

ics, and electronics, it was only in [7] that the experimental

observation of such phenomena caused by QED effects was

given.

In this paper, we study the dynamical behavior of the

Casimir nonlinear oscillator in the weakly damped, weakly

forced regime. We show that, for some range of the pa-

rameters, the system has a homoclinic loop. By using the

method of Melnikov, we prove that, under the effect of a

periodic forcing, the system can exhibit transverse homo-

clinic orbits, and thus Smale horseshoes.

2. The Casimir nonlinear oscillator

A simple model of the Casimir oscillator is shown in fig-

ure 1. It is composed of a metallic plate (thick grey line),

free to rotate about two torsional rods (black dot), sub-

jects to the momentum generated by the nonlinear Casimir

force, which arises from the interaction with a fixed metal-

lic sphere of radius R placed at a distance z. The oscillator

is excited by the application of a voltage to an electrode

fixed under the plate. The choice of the spherical shape for

one of the interacting surfaces is justified to avoid align-

ment problems.

For this arrangement, the Casimir force takes the value

[2]

FC =
π3
~ c R

360 z3
(1)

where ~ is the Planck constant/2π, and c is the speed of

light.

So far, we ignore the dissipation and the forcing. At the

equilibrium distance z = d, the momentum generated by

the Casimir force MC = FC b is balanced by the restoring

elastic torque Me = −α θ, inducing a rotation θ = θ0,

−α θ0 +
π3
~ c R b

360 d3
= 0 (2)
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Figure 1: The Casimir nonlinear oscillator [7].

where α is the torsional spring constant. For small oscilla-

tions, z ∼ d−bθ, and following [7], the Casimir force FC(z)

is Taylor expanded about d up to z3. The potential energy

of the system can be easily calculated giving

V(θ) =
α(θ + θ0)2

2
− FC(d) b θ +

F′
C

(d)b2

2
θ2

−
F′′

C
(d)b3

6
θ3 +

F′′′
C

(d)b4

24
θ4 (3)

where FC(d), F′
C

(d), F′′
C

(d), F′′′
C

(d) are the Casimir force,

and its first, second and third derivatives evaluated at a dis-

tance d, respectively. The potential V(θ) has a local mini-

mum in the origin and two local maxima at

θ± =
3

F′′′
C

(d)b4















F′′
C

(d)b3

2

±

√

(

F′′
C

(d)b3

2

)2

− 4
F′′′

C
(d)b4

6

(

α + F′
C

(d)b2
)





















, (4)

and decreases unbounded for both θ < θ− and θ > θ+.

Therefore the system has a neutrally stable equilibrium in

the origin (a center), and two unstable equilibria at θ±,

which are of saddle type. The Lagrange equation of mo-

tion is

θ̈ = λ θ + µ θ2 + ν θ3 (5)

where

λ = −












ω2
0 +

F′
C

(d) b2

I













; µ =
F′′

C
(d) b3

2I
; ν = −

F′′′
C

(d) b4

6I
.

(6)

Here, I is the moment of inertia of the plate, and ω2
0
= α/I

is the fundamental frequency of the oscillator. To simplify

eq. (5), we introduce a new variable φ = θ−θ+, and rewrite

(5) as a system of first order ODEs















φ̇ = J

J̇ = ν φ (φ + θ+) (φ + θ+ − θ−) .
(7)

Then we introduce new parameters

ρ = ν(2θ+ − θ−); σ = ν θ+(θ+ − θ−) (8)

and perform a linear change of coordinates

(φ, J, t)→
(
√

σ

ν
φ,
σ
√
ν

J,
1
√
σ

t

)

, (9)

which reduces eq. (7) to















φ̇ = J

J̇ = φ3
+ ξ φ2

+ φ
(10)

where ξ = ρ/
√
νσ.

Eq. (10) presents the advantage to depend on the parameter

ξ only, which adsorbs the three previously defined param-

eters λ, µ, ν. Moreover, we have shifted one saddle to the

origin, the other to φ− and the center to φ+, where

φ± =
1

2

(

−ξ ±
√

ξ2 − 4

)

. (11)

3. Homoclinic Orbit

In this section we show that, for certain values of the

parameter ξ, system (10) possesses a homoclinic orbit

through the origin, surrounding a region filled with peri-

odic orbits. System (10) has the Hamiltonian

H(φ, J) =
J2

2
−
φ4

4
−
ξ φ3

3
−
φ2

2
, (12)

the level sets H(φ, J) = E define the trajectories of (10).

For the orbit passing through the origin we have H(0, 0) =

0, which implies

J = ±

√

φ2

(

φ2

2
+

2ξ φ

3
+ 1

)

. (13)

This curve intersects the φ–axis in three points, φ̃ = 0, and

φ̃± = −
2ξ

3
±

√

4ξ2

9
− 2 (14)

provided ξ > 3
√

2/2. Introducing the positive determina-

tion of (13) in the first of (10) we obtain

φ̇ =

√

φ2

(

φ2

2
+

2ξ φ

3
+ 1

)

. (15)

By separation of variables, eq. (15) can be integrated from

0 to t in terms of elementary functions, since it has repeated

roots. Choosing the initial conditions as (φ(0), J(0)) =

(φ̃+, 0) we have

φ(t) = 3
tanh2 t−K

2
− 1

2ξ − 3
√

2 tanh t−K
2

(16)
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where K = 2 atanh

( √
2

2
φ̃+

)

. Computing the derivative and

with some algebraic manipulations we obtain

J(t) =
12ξ sinh(t − K) − 18

√
2 cosh(t − K)

(

2ξ + 2ξ cosh(t − K) − 3
√

2 sinh(t − K)
)2
. (17)

It is readily seen that

lim
t→±∞

(φ(t), J(t)) = (0, 0) (18)

which matches the requirement for (φ(t), J(t)) to be a ho-

moclinic loop through the origin.

Next we observe that for ξ > 3
√

2/2, eqs (11) and (14)

imply φ̃+ < φ+, that is, the center lies inside the region

delimited by the homoclinic orbit. Since outside the in-

terval between the two saddles the potential decreases un-

bounded, we conclude that the homoclinic orbit is the sepa-

ratrix between a region filled of periodic orbits and a region

characterized by unbounded trajectories.

4. Homoclinic chaos and Melnikov method

Now we include weak dissipation and periodic forcing.

The equation of motion becomes















φ̇ = J

J̇ = φ3
+ ξ φ2

+ φ + ǫ (A cosωt − γJ) ,
(19)

where ǫ ≪ 1 takes into account the weakness of the per-

turbation, A and ω are the amplitude and frequency of

the forcing, respectively, and γ is the damping constant.

Under the effect of the perturbation, the stable and un-

stable manifolds split, and may eventually intersect each

other transversally, giving rise to transverse homoclinic or-

bits. The existence of such orbits implies, via the Smale–

Birkhoff theorem, the presence of Smale horseshoes, and it

is a signature of chaotic behavior [8].

These transversal intersections may be found by search-

ing the simple zeros of the Melnikov function [8]. For the

case under investigation the Melnikov function is given by

M(t0) =

∫

+∞

−∞
J(t)

[

A cosω(t + t0) − γ J(t)
]

dt. (20)

We split this integrals into two parts. Using integration by

parts

∫

+∞

−∞
J(t) cos ω(t + t0) dt = φ(t) cos ω(t + t0)

∣

∣

∣

∣

∣

∣

+∞

−∞

+ω

∫

+∞

−∞
φ(t) sin ω(t + t0) dt. (21)

It is easy to see that the first contribution is null, as φ(t) goes

to zero for t → ±∞. With the substitution x = (t − K)/2,

and using the properties of hyperbolic functions, the second

contribution becomes

ω

∫

+∞

−∞
φ(t) sin ω(t + t0) dt =

6ω

∫

+∞

−∞

sin(2x + K + t0)

cosh x (3
√

2 sinh x − 2ξ cosh x)
dx. (22)

This integral can be solved by the method of residues,

observing that we have regularly spaced simple poles at

z = i(π/2 + kπ) and z = atanh (3
√

2/(2ξ)) + i(π/2 + kπ),

and considering the integration path shown in figure 2.

R−R

i
π

2

iπ

atanh
3
√

2

2ξ

0

Figure 2: The path of integration for (22).

By using Green theorem, the second part can be recast

as a line integral, since it is not explicitly time dependent,

obtaining

∫

+∞

−∞
J2(t) dt =

∫

Γ0

J(φ) dφ = 2

∫ 0

φ̃+

φ

√

φ2

2
+

2ξ φ

3
+ 1 dφ,

(23)

which can be solved by usual methods.

The final results for (20) is

M(t0) = −γ ρ + Aσ sin













ω













t0 + K + atanh
3
√

2

2ξ

























(24)

where

ρ = 4
3 − ξ2

9
+

2ξ(4ξ2 − 18)

27
√

2
ln

2ξ + 3
√

2
√

4ξ2 − 18
(25)

σ = 2
√

2 πω cosech (ωπ) sin













ω atanh
3
√

2

2ξ













. (26)

From (24), the Melnikov function has infinitely many zeros

provided

sin













ω













t0 + K + atanh
3
√

2

2ξ

























=
ρ

σ

γ

A
(27)

These zeros are simple if
dM(t0)

dt0
, 0. For the derivative we

have

dM(t0)

dt0
= ωAσ cos













ω













t0 + K + atanh
3
√

2

2ξ

























. (28)

A sufficient condition for
dM(t0)

dt0
, 0 when M(t0) = 0 is

−1 < sin













ω













t0 + K + atanh
3
√

2

2ξ

























< 1 (29)
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from which we finally derive the condition to have homo-

clinic tangencies
A

γ
>

∣

∣

∣

∣

∣

ρ

σ

∣

∣

∣

∣

∣

. (30)

In figure 3 are shown the stable and unstable manifolds,

obtained through numerical simulations, for ξ = 4, ǫ γ =

0.1, ω = 1, and different values of ǫ A. The homoclinic

loop is also shown (dashed line) for reference. For A less

than the critical value, the manifolds are well apart. For

A = 0.02126, very close to the theoretical value Ac = 0.02

obtained from (30), the first homoclinic tangency occurs.

For higher values of A the manifolds intersect transversally.
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Figure 3: Numerically obtained stable and unstable mani-

folds for different forcing amplitudes. Upper: A = 0.017.

Middle: A = 0.02126. Lower: A = 0.025.

Under the effect of the perturbations, we expect that the

periodic trajectories inside the homoclinic loop undergo

some kind of bifurcation. In particular, we expect the emer-

gence of limit cycles from the center, with period multiple

to that of the periodic forcing. These scenario is commonly

know as subharmonic resonances [8], its analysis is left to

a future work.

5. Conclusions

Recently, there has been a great amount of attention

toward the possible application of QED effects in nano–

electro–mechanical devices.

We have analyzed the dynamical behavior of one such

apparatus, e.g. the Casimir nonlinear oscillator. Resorting

to the Melnikov method, we have shown that, due to the

nonlinear nature of Casimir force, when a periodic forcing

is applied, the oscillator can exhibit transversal homoclinic

intersections between stable and unstable manifolds. Via

the Smale–Birkhoff theorem, this implies the existence of

Smale’s horseshoes.

The importance of this result is twofold. On the one

hand, it is relevant in view of possible applications of such

oscillator. On the other hand, we have shown that chaotic

behavior can arise in a practical device, due to a QED ef-

fect. To the best of our knowledge, this result is here re-

ported for the first time.
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